Dark matter

annual modulation results from the ANAIS-112 experiment

- Annual modulation in direct detection of WIMPs
- ANAIS experiment
 - Goals and history
 - Detector set-up
 - Performance and analysis

Annual modulation results and sensitivity

Background model

ANAIS

ECU 2021 **The 1st Electronic Conference on Universe** 22-28 FEBRUARY 2021 | ONLINE

Susana Cebrián scebrian@unizar.es

Direct detection of dark matter

S. Cebrián, ECU2021

Distinctive signal in the interaction rate of WIMPs

- ✓ Cosine behaviour
- ✓ 1 year period
- ✓ Maximum around June 2nd
- ✓ Weak effect (1-10%)
- ✓ Only noticeable at low energy
- ✓ Should have a phase reversal at low energies

No background known to mimic the effect

DAMA/LIBRA results: modulation with proper features at 12.9 CL

- 2.46 ton×y (over 20 y, 25x9.7 kg NaI(TI))
- Gran Sasso laboratory (Italy)

A. K. Drukier et al, Phys. Rev. D 33 (1986) 3495
K. Freese et al, Phys. Rev. D 37 (1988) 3388
K. Freese et al, Rev. Mod. Phys. 85 (2013) 1561

2-6 keV

R. Bernabei et al, Eur. Phys. J. C 73 (2013) 2648 R. Bernabei et al, Nucl. Phys. At. Energy 19, 307 (2018)

S. Cebrián, ECU2021

Strong **tension** when interpreting DAMA/LIBRA anual modulation signal as Dark Matter, even assuming more general halo/interaction models

A model-independent proof/disproof with the same Nal target is mandatory

No annual modulation signal in other experiments

XENON100

E. Aprile et al, Phys. Rev. Lett. 118, 101101 (2017) XMASS

K. Abe et al, Phys. Rev. D 97, 102006 (2018) M. Kobayashi et al, Phys. Lett. B 795 (2019) 308

D.S. Akerib et al, Phys. Rev. D 98, 062005 (2018) CDEX

L.T. Yang et al, Phys. Rev. Lett. 123 (2019) 221301

S. Cebrián, ECU2021

XENON100

LUX

S. Cebrián, ECU2021

ANAIS: goals and history

ANAIS (Annual modulation with NAI Scintillators) intends

to confirm the DAMA/LIBRA modulation signal

using the **same target and technique** (3x3 detectors, **112.5 kg**)

in a different environment at the Canfranc Underground Laboratory (Spain)

Experimental requirements:

- Energy threshold at or below 1-2 keV_{ee}
- Background as low as possible below 10 keV_{ee} (at or below a few cpd/keV/kg)
- Very stable operation conditions

ANAIS: goals and history

Detector set-up: detectors

Nine modules produced by Alpha Spectra Inc (US) following low radioactivity protocols

Detector	Quality powder	Received at Canfranc in	
D0, D1	<90 ppb K	December 2012	
D2	WIMPScint-II	March 2015	
D3	WIMPScint-III	March 2016	
D4, D5	WIMPScint-III	November 2016	
D6, D7, D8	WIMPScint-III	March 2017	

- Mylar window allowing low energy calibration
- Two Hamamatsu R12669SEL2 photomultipliers coupled to each crystal at Canfranc clean room
 - Low background and high Quantum Efficiency
 - Radioactivity screening at Canfranc

cuflon PCB

Housing made at LSC of electroformed copper

Detector set-up: shielding

3,0 m

Detector set-up: calibration system

Radon-free **system** to allow calibration at low energy

- Detectors equipped with a **mylar window**
- ¹⁰⁹Cd sources on flexible wires
- Simultaneous calibration of the nine modules
- Energies 11.9 keV, 22.6 keV and 88.0 keV
- Performed every two weeks

Detector set-up: data acquisition

- **DAQ hardware and software** designed and tested in previous ANAIS set-ups
 - Individual PMT signals digitized and fully processed (2 Gs/s, 14 bits)
 - Trigger at phe level for each PMT signal
 - AND coincidence in 200 ns window
 - Redundant energy conversion by QDC
 - Trigger in OR mode among modules
- Muon detection system implemented to:
 - tag muon related events
 - monitor onsite muon flux

Detector set-up: slow control

- Monitoring of **environmental parameters** ongoing since the start of dark matter run:
 - Monitoring:
 - Rn content, humidity, pressure, different temperatures, N_2 flux, PMT HV, muon rate, ... Data saved every few minutes and alarm messages implemented
 - Stability checks:
 - gain, trigger rate, ...

Performance of ANAIS-112 experiment after the first year of data taking 341.72 days, 105.32 kg y J. Amaré et al, Eur. Phys. J. C (2019) 79:228

Now 3 years analyzed: 1018.6 days, 313.95 kg y

• Good stability

Evolution of positions of ¹⁰⁹Cd lines from calibrations

 \rightarrow monitoring (and correction if necessary) of possible gain drifts

• Effective filtering protocols to reject PMT noise events, which limit energy threshold

- **Triggering** below 1 keV_{ee}: bulk 22 Na and 40 K events identified by coincidences with high energy gamm ϵ^{-}

- Based on ¹⁰⁹Cd calibrations and data from ²²Na and ⁴⁰K coincidence populations

- Multiparametric cuts to select events
- 1. Pulse shape cut to select pulses with NaI(TI) scintillation constant
- 2. We remove asymmetric events (<2 keVee) with origin in the PMT
- 3. Remove 1 s after a muon passage
- 4. Multiplicity = 1 (Reject events that deposit energy simultaneously in more than one crystal)

S. Cebrián, ECU2021

• Effective filtering protocols to reject PMT noise events, which limit energy threshold

- Acceptance efficiency curves after all cuts for each detector
 - Trigger efficiency: from the measured light collected by a Monte Carlo technique
 - Pulse shape cut: from ²²Na and ⁴⁰K populations
 - Asymmetry cut: from calibration runs

$$\varepsilon(E,d) = \varepsilon_{trg}(E,d) \times \varepsilon_{PSA}(E,d) \times \varepsilon_{asy}(E,d)$$

• Quenching factor determination $E_{ee} = QF E_{nr}$ Relative efficiency factor for nuclear recoil scintillation

H.W. Joo, H.S. Park and J.H. Kim et al./Astroparticle Physics 108 (2019) 50-56

- Measurements carried out in October 2018 in the Triangle Universities Nuclear Laboratory (Duke University, US), in coordination with Duke and Yale groups from COSINE collaboration
- Several small crystals from Alpha Spectra company with different quality powder quality
- Analysis almost finished

Detailed **background models** for each detector, based on Geant4 Monte Carlo simulation and accurate quantification of **background sources**

Assessment of backgrounds of the ANAIS experiment for dark matter direct detection, J. Amaré et al, Eur. Phys. J. C 76 (2016) 429 Analysis of backgrounds for the ANAIS-112 dark matter experiment, Eur. Phys. J. C 79 (2019) 412

- Activity from external components measured with HPGe detectors at Canfranc
- Internal activity directly assessed: mainly ⁴⁰K, ²¹⁰Pb

Detector	$^{40}\mathrm{K}$ (mBq/kg)	232 Th (mBq/kg)	$^{238}\mathrm{U}$ (mBq/kg)	$^{210}\mathrm{Pb}$ (mBq/kg)
D0	1.33 ± 0.04	$(4\pm 1) \ 10^{-3}$	$(10\pm 2) \ 10^{-3}$	3.15 ± 0.10
D1 D2	1.21 ± 0.04 1.07 ± 0.03	$(0.7 \pm 0.1) \ 10^{-3}$	$(2.7 \pm 0.2) \ 10^{-3}$	0.7 ± 0.10
D3 D4	0.70 ± 0.03 0.54 ± 0.04			1.8 ± 0.1 1.8 ± 0.1
D5	1.11 ± 0.02	(1, 0, 1, 0, 1), 10 = 3		0.78 ± 0.01
D6 D7	0.95 ± 0.03 0.96 ± 0.03	(1.3 ± 0.1) 10 ⁻³ (1.0 ± 0.1) 10 ⁻³		0.81 ± 0.01 0.80 ± 0.01
D8	$0.76 {\pm} 0.02$	$(0.4\pm0.1)\ 10^{-3}$		$0.74 {\pm} 0.01$

²³²Th, ²³⁸U: determined by alpha rate following PSA and analysis of BiPo sequences at a level of a few μBq/kg, but ²¹⁰Pb out of equilibrium

Detailed **background models** for each detector, based on Geant4 Monte Carlo simulation and accurate quantification of **background sources**

Cosmogenic activity in crystals: short-lived Te and I isotopes, ³H, ²²Na, ¹⁰⁹Cd, ¹¹³Sn

²²Na: from analysis of coincidences

¹⁰⁹Cd, ¹¹³Sn: from peaks at binding energies of K-shell electrons (after EC)

³**H:** additional background source contributing only in the very low energy region required, which could be tritium

D0-D1: 0.20 mBq/kg **D2-D8:** 0.09 mBq/kg (upper limit set by DAMA/LIBRA) J. Amaré et al, JCAP 02 (2015) 046 J. Amare et al, Astropart. Phys.97 (2018) 96 P. Villar et al, Int. J. Mod. Phys. A 33 (2018) 1843006

Comparison with first year of ANAIS-112 data at very low energy

Unexplained events <3 keV: non-bulk scintillation events leaking in the Rol or some unknown background source not considered in the model

• Individual contributions in ANAIS-112 data

40K and 22Na peaks and 210Pb (bulk+surface)and 3H continua are the most significantcontributions in the very low energy region210Pb:32.5%3H:26.5%40K:12%22Na:2.0%

• **Prediction of time evolution** (from decaying cosmogenics and ²¹⁰Pb)

Annual modulation results

J. Amaré^{1,2}, S. Cebrián^{1,2}, D. Cintas^{1,2}, I. Coarasa^{1,2}, E. García^{1,2},
M. Martínez^{1,2,3}, M.A. Oliván^{1,2,4}, Y. Ortigoza^{1,2},
A. Ortiz de Solórzano^{1,2}, J. Puimedón^{1,2}, A. Salinas^{1,2}, M.L. Sarsa^{1,2}
and P. Villar^{1,2}
¹Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
²Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s.n., 22880 Canfranc Estación, Huesca, Spain
³Fundación ARAID, Av. de Ranillas 1D, 50018 Zaragoza, Spain
⁴Fundación CIRCE, 50018, Zaragoza, Spain

E-mail: mlsarsa@unizar.es

Presented at TAUP2019

 $[2-6] \text{ keV} \rightarrow S_m = -0.0029 + 0.0050 \text{ c/keV/kg/d}$

 $[1-6] \text{ keV} \rightarrow S_m = -0.0036 + 0.0054 \text{ c/keV/kg/d}$

Annual modulation results

DAMA/LIBRA results:

Preliminary analysis for **3 y**, 313.95 kg x y

[1-6] keV S_m^{DAMA} = 0.0105 cpd \pm 0.0011/kg/keV

[2-6] KeV S_m^{DAMA} = 0.0102 \pm 0.0008 cpd/kg/keV

Period fixed @ 1 year, phase fixed @ 2nd June

Least-squares fits of ANAIS-112 10-day time-binned data in 1-6 / 2-6 keV to

 $R(t) = R_0 + R_1 \exp(-t/\tau) + S_m \cos(\omega(t + \phi))$

Null hypothesis well supported by the χ^2 test Modulation hypothesis best fits

τ fixed from background model ω fixed corresponding to 1 year period φ fixed to have the cosine maximum in June, 2nd

 \mathbf{S}_m fixed to 0 in the null hypothesis and left unconstrained for the modulation hypothesis

Annual modulation sensitivity

I. Coarasa et al, ANAIS-112 sensitivity in the search for dark matter anual modulation, Eur. Phys. J. C 79 (2019) 233

Detection limit at 90% C.L. for a critical limit at 90% C.L. for ANAIS-112

- Background from measured, efficiency corrected levels (10% unblinded data)
- 1-6 keV_{ee} region
- 5 years

Dark matter hypothesis (SI interaction)

Annual modulation sensitivity

Sensitivity to DAMA/LIBRA result as $S_m^{DAMA} / \sigma(S_m)$

Standard deviation of the modulation amplitude analitically estimated from:

- updated background
- efficiency estimates
- live time distribution

 3σ sensitivity measured sensitivity $\sigma(S_m)$ 68% C.L. DAMA/LIBRA uncertainty

Sensitivity projection to DAMA/LIBRA result fully confirmed by data

 3σ sensitivity at reach in ~1 y from now!

Summary and outlook

✓ ANAIS-112: data taking using 112.5 kg of Nal(TI) running smoothly for >3 y

- Very high duty cycle
- Careful low energy calibration (from external gamma sources and bulk emissions)
- Excellent light collection of ~15 phe/keV and analysis threshold at 1 keV_{ee} in all modules
- Robust filtering of PMT events
- Good **background understanding**, dominated by crystal activity (²¹⁰Pb, ⁴⁰K, ²²Na, ³H)

Analysis for model-independent annual modulation of 2 y of data taking:

- Best fits for modulation amplitude are incompatible with DAMA/LIBRA result at 2.6 σ
- Null hypothesis well supported
- Confirmed sensitivity of 3σ for 5 y of data

Analysis for **3 y** of data up to August 2020 will be **released very soon**

• Expected sensitivity to DAMA/LIBRA result at 1-6 (2-6) keV of 2.3 (2.7) σ

Summary and outlook

✓ Next future:

- Data taking will continue in the same conditions up to at least 5 y
- Excess of events in 1-2 keV to be understood
- Determination of scintillation Quenching Factor for nuclear recoils at TUNL laboratories (Duke University, US) underway, investigating possible dependence on crystal quality

✓ Longer term:

- ANAIS-112 **extension** under consideration
 - Reduce threshold working with SiPM at low temperature
 - Reduce background by growing ultrapure crystals underground
- First results on dark matter annual modulation from ANAIS-112 experiment, J. Amaré et al, Phys. Rev. Lett. 123 (2019) 031301.
- ANAIS-112 status: two years results on annual modulation, J. Amaré et al, J.Phys. (Conf. Ser.) 1468 (2020) 012014.
- Performance of ANAIS-112 experiment after the first year of data taking, J. Amaré et al, Eur. Phys. J. C (2019) 79:228.
- Analysis of backgrounds for the ANAIS-112 dark matter experiment, J. Amaré et al, Eur. Phys. J. C (2019) 79:412.
- ANAIS-112 sensitivity in the search for dark matter annual modulation, I. Coarasa et al, Eur. Phys. J. C (2019) 79:223.

Dark matter annual modulation results from the ANAIS-112 experiment

Julio Amaré ^{1,2}, Susana Cebrián ^{1,2,*}, David Cintas ^{1,2}, Iván Coarasa ^{1,2}, Eduardo García ^{1,2}, María Martínez ^{1,2,3}, Miguel Ángel Oliván ^{1,2,4}, Ysrael Ortigoza ^{1,2}, Alfonso Ortiz de Solórzano ^{1,2}, Jorge Puimedón ^{1,2}, Ana Salinas ^{1,2}, María Luisa Sarsa ^{1,2} and Patricia Villar ^{1,2}

- ¹ Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- ² Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s.n., 22880 Canfranc Estación, Huesca, Spain
- ³ Fundación ARAID, AV. De Ranillas 1D, 50018 Zaragoza, Spain
- ⁴ Fundación CIRCE, 50018 Zaragoza, Spain

