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Proceedings 1 

Fuzzy Logic Modeling for Integrating the Thematic Layers De- 2 

rived from Remote Sensing imagery: A Mineral Exploration 3 

Technique † 4 

Abstract: In this study, fuzzy logic modeling was implemented to fuse the thematic layers derived 5 

from Principal Component analysis (PCA) technique for generating mineral prospectivity maps. 6 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and WorldView-3 7 

satellite remote sensing data were used. A spatial subset zone of the Central Iranian Terrane (CIT), 8 

Iran was selected in this study. The PCA techniques was implemented for the processing of the 9 

datasets and producing alteration thematic layers. The PCA4, PCA5 and PCA8 were selected as the 10 

most rational alteration thematic layers of ASTER for generating prospectivity map. The fuzzy 11 

gamma operator was used to fuse the selected alteration thematic layers. The PCA3, PCA4 and 12 

PCA6 thematic layers (most rational alteration thematic layers) of WV-3 were fused using fuzzy 13 

AND operator. Field reconnaissance, X-ray diffraction (XRD) analysis and Analytical spectral de- 14 

vices (ASD) spectroscopy were carried out to verify the image processing results. Subsequently, 15 

mineral prospectivity maps were produced showing high potential zones of Pb-Zn mineralization 16 

in the study area. 17 
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 19 

1. Introduction 20 

Remote sensing satellite imagery has been applied to detect alteration minerals, spe- 21 

cifically dolomite and gossan zone (Govil et al., 2018; Pour et al., 2018a,b,c,2019a,b,c). A 22 

variety of image processing techniques were previously used to map of hydrothermal al- 23 

teration minerals. However, fusing the most rational thematic layers to generate a com- 24 

prehensive mineral prospectivity map for sediment-hosted Pb-Zn exploration was ne- 25 

glected. Fuzzy logic modeling has been successfully used for mineral prospectivity map- 26 

ping in metallogenic provinces. Fuzzy logic modeling for mineral prospectivity mapping 27 

typically incorporates three main stages, including fuzzification of evidential data, logical 28 

combination of fuzzy evidential maps with the support of an inference network and 29 

proper fuzzy set operations and defuzzification of fuzzy mineral prospectivity output in 30 

order to aid its interpretation (Kim et al., 2019). The CIT area (Figure 1) contains great 31 

potential for carbonate-hosted Pb-Zn deposits (Rajabi et al., 2012). There is no comprehen- 32 

sive study to map hydrothermal alteration mineral zones in this area, yet. In this research, 33 

ASTER and WorldView-3 (WV-3) satellite remote sensing data were used for prospectiv- 34 

ity mapping. The main objective of this analysis is implementing PCA technique to ASTER 35 

and WV-3 to generate mineral prospectivity maps using fuzzy logic modeling. 36 

2. Geologic setting of the study area 37 

Three fault systems are documented in the CIT area, including Nayband and 38 

Nehbandan faults, Poshteh-Badam and Kalmard faults and Kuhbanan and Rafsanjan 39 

faults. The occurrence of magmatism in the area is associated with a back-arc extension 40 

zone (Samani, 1988). The sediment-hosted Pb-Zn mineralization in the study area is 41 

formed during synchronous faulting activities with sedimentation, detrital sedimentation 42 

associated with faulting activities, replacement of rhyolitic volcanic rocks and formation 43 

of rift sediments and subsidence (Samani, 1988).  44 
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Figure 1. Geology map of the study area (modified from Chadormalo geology map, 1:100000, 2 
sheet No:71, Geological Survey and Mineral Exploration of Iran (GSMEI)). Black cube delimits 3 
ASTER imagery. 4 

3. Materials and methods 5 

3.1. Data characteristics  6 

ASTER and WV-3 was utilized in this analysis. ASTER has three bands in visible and 7 

near infrared (VNIR) (0.52 and 0.86 µm), six bands in shortwave infrared (SWIR) (1.6 to 8 

2.43 µm) and five bands in thermal infrared (TIR) (8.125 to 11.65 µm) with 15 m,30 m and 9 

90 m spatial resolutions, respectively (Abrams et al., 2015). ASTER strip size is 60km. WV- 10 

3 has eight spectral bands in the VNIR wavelength region (1.24 m spatial resolution) and 11 

for eight spectral bands in the SWIR (3.7 m spatial resolution) with strip size of 13 km 12 

(Kuester, 2016). An ASTER scene cloud-free level 1T product and A level 2 A WV-3 data 13 

covering the study area were processed in this study.  14 

3.2. Image processing  15 

3.2.1. Principal Components Analysis (PCA) 16 

The PCA is a mathematical technique that transforms a quantity of correlated varia- 17 

bles into a number of uncorrelated linear variables called PCs (Gupta et al., 2013). In this 18 

analysis, the PCA method was implemented based on covariance matrix to ASTER 19 

(VNIR+SWIR bands) and WV-3 (VNIR bands) for identifying hydrothermal alteration 20 

mineral assemblages in the study area. Table 1 (A-B) shows eigenvector matrix for the 21 

selected bands of the remote sensing datasets. 22 

3.2.2 Fuzzy logic modeling 23 

Fuzzy logic modeling was proposed by Zadeh (1965). It is a form of many-valued 24 

logic in which the truth values of variables may be any real number between 0 and 1 both 25 

inclusive (Novák et al., 1999). A fuzzy set of A is a set of ordered pairs:               26 

                                      � =  ���, µ�(�)� | � ϵ ��                                  (1) 27 

where µ_A (x) is termed the membership function or membership grade of x in A. 28 

µ_A (x) maps x to membership space (M), when M contains only the two points 0 and 1. 29 

The range of µ_A (x) is [0, 1], where zero expresses non-membership and one expresses 30 

full membership (Zadeh 1965). A set of fuzzy membership values is stated in a continuous 31 

series from 0 to 1.  32 
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Table 1. Eigenvector matrix derived from PCA for the selected bands of the remote sensing datasets used in 1 
this study. (A) ASTER bands (VNIR+SWIR); (B) WV3 band (1 to 8 VNIR). 2 

(C)Eigenvecto

r 
Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9 

PCA 1  0.306376  0.354156  0.357999  0.373947  0.327957  0.351186  0.312760  0.294817  0.311584 

PCA 2 -0.506185 -0.503027 -0.377710  0.175856  0.271555  0.270302  0.240492  0.247816  0.226041 

PCA 3 -0.277958 -0.020633  0.232513  0.555288  0.118013  0.231883 -0.218093 -0.635404 -0.202253 

PCA 4 -0.123343  -0.657125 -0.626671  0.626671  0.219378  0.135436 -0.037673 -0.233067 -0.106928 

PCA 5 -0.005336 -0.013068 -0.049688  0.544534 -0.082811 -0.437342  0.180406  0.400661 -0.556429 

PCA 6  0.269821 -0.516554  0.233199  0.285564 -0.309355 -0.365753  0.067872 -0.145724  0.518769 

PCA 7 -0.209453  0.529334 -0.464617  0.294560 -0.485018 -0.017691 -0.005474 -0.049871  0.367733 

PCA 8  0.027679 -0.039707  0.000725  0.469109  0.336338 -0.003040 -0.870266  0.409042  0.160571 

PCA 9  0.152864 -0.239013  0.098348  0.029191 -0.632661  0.637281 -0.028538  0.205046 -0.244409 

  3 
(D)Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

PCA 1 -0.314986 -0.330951 -0.348156 -0.359256 -0.364601 -0.367182 -0.369097 -0.370119 

PCA 2  0.655926  0.454510  0.183457 -0.046042 -0.154854 -0.251952 -0.320189 -0.370709 

PCA 3 -0.331273 -0.598506  0.354295 -0.129646  0.661001 -0.220796  0.341420  0.108973 

PCA 4 -0.244961  0.345377  0.145561  0.631659  0.012267  0.368220 -0.509311 -0.142316 

PCA 5 -0.384633  0.279151  0.433976 -0.092808  0.081588 -0.370014 -0.142544  0.187618 

PCA 6  0.236442 -0.427799 -0.515988 -0.065670  0.646312  0.248715  0.043257  0.095274 

PCA 7  0.257771 -0.301701 -0.070317 -0.389055  0.471694  0.225588 -0.427691  0.035215 

PCA 8  0.174655 -0.560947  0.307690 -0.163685 -0.332755  0.108819  0.068151 -0.001993 

  4 

3.3.5. Fieldwork Data and Laboratory Analysis  5 

GPS survey, X-ray diffraction (XRD) analysis and Analytical spectral devices (ASD) 6 

spectroscopy were carried out in the study area and preformed to the samples collected 7 

from the main lithological units exposed, respectively.  8 

4. Results and discussion 9 

 The PCA technique was also implemented on the spatial selected subset of ASTER 10 

for mapping alteration minerals. The eigenvector matrix for ASTER VNIR+SWIR bands is 11 

shown in Table 1 (A). The PC3 has 0.555288 loading in band 4 and -0.635404 loading in 12 

band 8. The chlorites and carbonate show high reflectance about 1.6 µm (band 4 of AS- 13 

TER), while absorption features at 2.350 µm, (bands 8 of ASTER) (Mars and Rowan, 14 

2010,2011). Therefore, the PC3 is considered as a thematic layer. The PC4 has -0.657125 15 

loadings in band 2 and 0.626671 loadings in band 4 (Table 1 A). Iron oxide/hydroxides 16 

minerals illustrate by strong absorption at 0.40 to 1.10 µm and reflection about 1.60 µm 17 

(Hunt and Ashley, 1979). Seeing the spectral location of bands 2 and 4 of ASTER, it is 18 

discernable that the PC4 image as a thematic layer. The PC5 shows 0.544534 loading in 19 

band 4 and -0.437342 loading in band 6 and -0.556429 loading band 9 (Table 1 A). The 20 

sulfate minerals display absorption features at 2.20 to 2.50 µm (Clark, 1999), correspond- 21 

ing to bands 6 to 9 of ASTER. Consequently, sulfate minerals can be mapped in the PC5 22 

image as a thematic layer. Carbonate minerals have diagnostic CO3 spectral absorptions 23 

near 2.35 µm, which can be significantly used to identify carbonate-bearing rocks (Clark 24 

1999). The carbonate minerals such as calcite and dolomite show distinctive narrow ab- 25 

sorption features around 2.35 µm analogous to band 8 (2.295–2.365 µm) of ASTER data 26 

(Mars and Rowan, 2010). Thus, PC8 image has information related to the spatial distribu- 27 

tion of dolomite. The PC8 has 0.469109 loading in band 4 and 0.336338 loading band 5, in 28 

addition 0.870266 loading in band 7 (Table 1 A). The PC8 image was also considered as a 29 

thematic layer.  30 
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The PCA statistical results for the WV-3 bands shows the PC3, PC4 and PC6 can be 2 

considered as thematic layers for mapping iron-stained alteration, dolomite/Fe2+ and 3 

Fe3+oxides, respectively. The PC3 has -0.598506 loading in band 2 and 0.661001 loading in 4 

band 5 (Table 1 B) for mapping iron-stained alteration. The PC4 shows 0.345377 loading 5 

in band 2 and 0.631659 loading in band 4 as well as -0.509311 loading in band 7 (Table 1 6 

B) for identification of dolomite/Fe2+. The PC6 contains -0.427799 in band 2 and (-0.515988 7 

loading band 3, while 0.646312 loading in band 5 (Table 1 B) for mapping Fe3+oxides. 8 

Mineral prospectivity maps were produced of alteration thematic layers using fuzzy- 9 

logic model (Table 3). The alteration thematic layers of ASTER were integrated using the 10 

fuzzy gamma operator (γ=0.6) (Table 3). ASTER prospectivity map shows the high value 11 

(0.7 to 1.0) of the favorability index as prospective zones (Figure 2). However, the highest 12 

value (0.9 to 1.0) of the favorability index can be considered the high prospective zones 13 

for Pb-Zn mineralizations, which overlap to documented Pb-Zn occurrences alongside 14 

fault systems (Figure 2).    15 

 16 

 17 

 18 

Figure 2. Mineral prospectivity map derived from ASTER selected alteration thematic layers. 19 

  Figure 3 shows prospectivity map derived from alteration thematic layers of WV- 20 

3 data. The fuzzy AND operator was implemented to fuse the selected alteration thematic 21 

layers (Table 3). The highest value of (0.8 to 1.0) the favorability index is obtained for few 22 

parts and a high value (0.6 to 0.9) of the favorability index in some parts of the study area. 23 

The Pb-Zn mineralization zones contain high favorability index value (0.6 to 1.0) and are 24 

also connecting to fault systems at the local scale (Figure 3). Accordingly, the most favor- 25 

able/prospective zones for Pb-Zn mineralization in the study area are in fault contact 26 

zones with impermeable lithological units.  27 

  28 

 29 

 30 
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Table 3. Fuzzification parameters for the thematic layers.  1 

Fuzzy Operator Membership Type Detection Input Layer Data Origin 

  

  
 

  
  

 
  

Gamma 

(γ=0.6) 
Linear 

Iron oxide/hydroxides minerals PC4 

ASTER Dataset OH/S-O/CO3-bearing minerals PC5 

Dolomite PC8 

AND Linear 

All iron oxides PC3 

World-View3 Dataset Dolomite/Fe2+ oxides PC4 

Fe3+ oxides PC6 

 2 
The argillic alteration, sericitic zones, iron oxides and dolomitization were found in 3 

during fieldwork. Several surface expressions of hematite, malachite, pyrite, galena and 4 

sphalerite were observed. Surface expression of Pb-Zn mineralization was typically de- 5 

tected in the fault contact of dolomite with other lithological units in several parts of the 6 

study area. The XRD analysis reveals the presence of quartz, dolomite, calcite, muscovite, 7 

chlorite, gypsum, albite, illite, jarosite and malachite. The ASD analysis for shale, gypsum, 8 

dolomite and calcite was measured, which shows some typical absorption features about 9 

1.40 µm attributed to OH/H2O stretches, 1.90 µm related to H2O stretches, 2.20 µm due 10 

to combination of the OH-stretching fundamental with Al-OH bending mode (Al-rich 11 

phyllosilicates), the absorption feature near 2.20 µm is related to S-O bending mode and 12 

absorption features related to Fe2+ at 0.9 to 1.2 µm and CO3 in 2.35 µm. 13 

 14 

       15 

Figure 3. Mineral prospectivity map derived from WV-3 selected alteration thematic layers. 16 

              17 

5. Conclusions  18 

ASTER and WV-3 were processed to generate mineral prospectivity maps for the CIT 19 

area. The PC3, PC4, PC5 and PC8 of ASTER mapping the spatial distribution of Mg-Fe- 20 

OH/CO3 minerals, iron oxide/hydroxides, OH/S-O/CO3-bearing minerals and dolomiti- 21 
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zation were considered as thematic layers. The PC3, PC4 and PC6 images of WV-3 identi- 1 

fying iron-stained alteration, dolomite/Fe2+ and Fe3+oxides were considered as thematic 2 

layers. The fuzzy-logic model was used to produce mineral prospectivity maps using al- 3 

teration thematic layers, including the PC4, PC5 and PC8 of ASTER and the PC3, PC4 and 4 

PC6 thematic layers of WV-3. As a result, the most favorable/prospective zones for Pb-Zn 5 

mineralization in the study area were identified that can be considered for future explo- 6 

ration field campaign.   7 
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