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1. INTRODUCTION

Iron is believed to be the fourth most abundant element in the earth crust. It
comprises more than 90% of all used metals tonnage produced worldwide.

Iron is extracted from its ore as it is almost never found in its free element state. To
obtain iron in its elemental form, the impurities must be removed by chemical
reduction.

OBJECTIVE

1.1 Direct Reduction of Iron Ore

Direct reduced iron (DRI) is the product of reduction iron ores (lumps, pellets or
fines) in solid state by gas or coal reducing agents (Dongchen 2016). The reaction
temperature range is 700°C to 1000°C.

% Reduction by Carbon (direct reduction)
For solid carbon in a DR process, the following three reduction reactions can be
written:
3Fe,0; + C — 2Fe;0, + CO
Fe,0, + C — 3FeO + CO
FeO+ C — Fe+ CO



1.2. Indirect Reduction of Iron Ore

¢ Reduction by CO (indirect reduction):
Above 570°C, iron oxide is reduced by CO in three stages:
3Fe,0,+ CO —2Fe,0,+ CO,
Fe,O,+ CO —3FeO + CO,
FeO + CO —Fe + CO,

Below 570°C, Fe,O; is directly reduced to Fe bypassing the wustite (FeO)
stage. Also existing literatures have shown that under 570°C, rate of
chemical reaction are not fast enough to cause significant errors except

devolatilization.

Reduction by Hydrogen (indirect reduction):
Reduction by Hydrogen occurs in three stages as follows:

3Fe, O, + H,—2Fe;0,+ H,0O
Fe,O,+ H,—3 FeO + H,O
FeO + H,—Fe + H,O



2. LITERATURE REVIEW
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3.0 METHODOLOGY
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Fig. 3.1: Schematics of Experimental Set-up
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3.0 METHODOLOGY (Cont’d)

(b) Vernier Calipers

Fig. 3.3:(a) Sample Measurement stage (b) Electric weighing balance



4.1 The Shrinking Core Model

The stages involved in the

kinetics are stated as follows: Reactant
COand H;
Step 1: Diffusion of gaseous reactant | TR
through the film surrounding the T e TN
particle to the surface of the solid. Enter thepelletby /% Ash >
diffusing through jf

Step 2: Penetration and diffusion of ,
reactant A through the blanket of ash ~ gsfimandash
to the surface of the unreacted core.

Step 3: Reaction of gaseous reactant

with solid at this reaction surface. \

\ gas film and ash

| .

Step 4: Diffusion of gaseous products | ~——  Product
through the ash back to the exterior | C0;and H,0
surface of the solid. |

R
Step 5: Diffusion of gaseous products
through the gas film back into the Fig. 4.1: The shrinking core model showing
main body of fluid. contact surface area of reaction

Alamsari, et al. (2011) 8



4.2 Chemical Composition of goethite [a-FeO(OH)] Ore

The composition of the commercial pure goethite hematite ore samples were analyzed using

X-ray diffraction (XRD) measurement with chemical empirical formula- Fe,H,O: ,

Fe; 605039, 20 and chemical formula- Fe,O, - H,0 - XH,0O, Fe; ¢55SN; 2503.

Table 4-1: Chemical analysis of commercial pure sample

Hematite (Fe,0) | Wustite (FeO)
82.65 0.94 131 005  0.69

(16x3) 16 16x2
T6x3) + GGexa) T 094 * (Fe 56y T131 (28 n (16x2))

(82.65 + 0.94 + 1.31)

82.65 x

%0, = x 100%

%0, = 30.2% or 0.302



4.3 Derived Reaction Kinetics Models

The following are the representation of the three major reaction kinetic stages as

regards the ore particle for possibilities for reaction rate controlling resistances

according to Levenspiel relation.

Diffusion Through Gas Film Control
° %: []_ — (rc/R)3] = XB

Diffusion Through Ash Layer Control
o= [1-30 - X" +2(1 - Xp)]

T

Chemical Reaction Control

t
« == 1-T¢/p

T
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4.4 Kinetic Model Equations (Cont’d)

Reduction time, t: is the specified time required for the ore sample (lump/pellet) to be
exposed to the reducing gas in the furnace at specified furnace temperature.

Reaction Control Time, T: This is the total time required by iron ore sample to experience
total conversion to metallic iron at specified furnace temperature.

Conversion factor, t/7: This the ratio between reaction residence time and reaction control
time. It is used to determine the rate controlling stage of the reduction process (i.e. gas film,
ash layer and chemical control stage)

Vi
Where, V; 1s the initial volume of the pellet/lump ore and V¢ is the volume of the
pellet after reduction for a given time.

S Ve =V
Swelling index (%) = x 100%

W,—W,
%0, W,

Degree of Reduction = (%) x100% = ( )xlOO%

%0, 1s the percentage weight of the total oxygen content in the hematite lump sample
where W, 1s the initial weight of sample, W, 1s the weight of sample at time t, and oo,
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5.0 RESULT AND DISCUSSION

5.1 Crack Propagation and Structural Changes during Reduction

Fig. 5.1: Crack formation and iron grain disintegration of fired hematite ore samples of different siies as
reduced for 40mins (a) 700°C (b) 800°C (c) 1000°C

Fig. 5.2: Effect of structural changes on reduction behavior at different temperatures in charcoal at
reduction time of 40mins. (a) 570°C (b) 700°C (c) 900°C
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5.3 Effect of Reduction Time on Reaction Control Time
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5.4 Effect of Particle Reduction time on Degree of Reduction
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Fig. 5.5: Effects of reduction time and Iron lump sizes on the degree of reduction of fired hematite lumps
reduced in commercially derived wood charcoal (a) 700°C (b) 800°C (c) 900°C (d) 1000°C
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5.5 Effect of Residence Time on Particle Swelling Extent
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Fig. 5.6: Effects of reduction time and hematite lumps on the swelling index of reduced ore samples in
wood charcoal for 40mins (a) 700°C (b) 800°C (c) 900°C (d) 1000°C.
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5.6 Effect of Firing Temperature on Degree of Reduction and Swelling Extent

o Temperature (a) 25 - (b)
9 - Temperature
g ——570 —=-700
g 800 900
gz 1000 2 20 —+—570 —=-700
- g 900 800/1000
E, E
g5 £ D
o
2 4 =
-
IT/ 2 10
0 - | . . :
10 2_0 - 3.0 40 %ﬂ
Residence Time(min) a
5 1 /
50 :
C D —
& 43 ( )_’ 0 I I I 1
540 10 20 30 40
§ 35 Temperature ) i )
T 30 - ——570  —=-700 800 Residence Time (mins)
% 25 | 900 ——1000
Eﬂ?g ’ Fig. 5.7: Effect of reduction firing temperatures,
10 - residence time on the degree of reduction of iron ore
N — — " .
) = * * + | sample for size range (a) 5-9.99mm (b)10-14.99mm
10 20 30 40
Residence Time (mins) (C) 15-20mm

17



5.7 Effect of Reaction rate control on D. R. and S.I. on

Ore Sizes(15-20mm)
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5.8 Analysis of Reduced Hematite Lump Sample by SEM/EDX

800:C, 15-20mm Si 29.56%

AL 210% AL 1.88%
Fe 60.79% 1 Fe 61.70%

Al 1.36%
Fe 56.55%

Ca0.11% B
Ti0.25%

Ca0.11%

Ti 0.18% Dl

110.32%

- — Y %

Fig. 5.8: SEM/EDX Micrograph view at 570, 800 and 1000°C at different size ranges 19



5.9 SEM/EDX Analysis and Degree of Metallization

Table 5-1: Reduce Ore-Carbon mixture from SEM/EDX analysis for metallic components

Temp. %W,ofO, %W,0ofO, %W,ofFe Degree of
(°C) at XRD at EDX at EDX Metallization (%0)
0 0 0 0 0
570 30.2 2.53 56.55 91.62
800 30.2 7.26 60.79 75.96
1000 30.2 2.10 61.70 93.05
70
60 e
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Fig. 5.9: Metallization degree as function of inlet
temperature from SEM/EDX micrograph
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Fig. 5.10: Degree of metallization as a function of reducing gas temperature
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6.0 CONCLUSION

The kinetics of reduction of commercially obtained Goethite iron ore have been successfully

investigated using commercially acquired wood charcoal at specified reduction time. Other results

achieved includes:

1.  Derivation of all useful kinetic model and chemical equations needed for result analysis have been
achieved.

2. The relationships between residence reaction time, conversion factor and control reaction have
been attained.

3.  The kinetic model for the percentage degree of reduction, swelling extent of the reduced iron ore
by rate contact and resident time of reaction has been achieved.

4.  The rate controlling resistance of the reduction reaction is the Ash Layer Control.

5. Anincrease in CO-H, composition produces higher metallization degree. Metallization degree is
also increased with the gas inlet temperature.

6. Increase in temperature, increases the degree of reduction and swelling extent of reaction.

7. Increase in reduction time, increases the degree of reduction and swelling extent of reaction.

8.  Increase in fixed carbon content of reductant, increases the degree of reduction and swelling extent.
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7.0. RECOMMENDATION

s The phase and chemical compositions of layers of ore sameples can also be
investigated in cases of incomplete reduction stages for complete metallization

of the iron ore samples.
s Smelting of the DRI by introduction of quicklime (CaO) into the reduction
process should be carried out to remove the high silicon content from reduced

iron ore sample.

¢ Laboratory approach to solid-solid iron oxide reduction smelting process should

be encouraged at the industrial level.
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