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Abstract: The kinetic population balance model (PBM) is widely used to predict the particle size 

distributions of grinding products. However, the model may not be solved if the rate of particle 

accelerates or decelerates in the mill hold-up, i.e., non-first-order breakage. This study presents a 

computational algorithm coupled with a pseudo-matrix model to simulate the product size 

distributions (PSDs) of successive breakage events at grinding. The algorithm’s applicability and 

accuracy were validated against PSDs taken from different grinding equipment.  The advantages 

of the algorithm are as follows: (i) Time can be implicitly or explicitly added to the algorithm. (ii) 

The parameters required to run the algorithm is quite few. (iii) The proposed algorithm can predict 

PSDs in the normal or abnormal breakage region. Even a short-time grinding test will be sufficient 

to estimate the parameters if abnormal breakage effects are reduced or eliminated. (iv) The 

algorithm can work with arbitrary sets of parameters that are irrelevant to the mill feed and mill 

type. Also, the algorithm’s framework shows that grinding is not a chaotic process; yet it may be 

due to the surface/gravitational attraction forces between particles and grinding media.  
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1. Introduction 

Kinetic population balance model (PBM) is used to predict the progeny size distribution of 

particles comminuted in size-reduction equipment [1–5]. It based upon the fundamental size-mass 

balance, which can be expanded in the following integrodifferential equation to describe the 

accumulation (or depletion) of particles of different sizes by breakage: 
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�(�) is the breakage rate (s-) of particles of size x, �(�, �) is the mass fraction of particles of size 

x in the mill hold-up at time t, and �(�|�) is the breakage function, i.e., the mass fraction of particles 

of size y broken to size x at a single breakage event. Equation 1 treats the particle as a continuous 

variable, which can be further discretized for simpler computations: 
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��(�) is the mass fraction of the size class i in the mill hold-up at time t, N is the total number of 

size fractions, Si is the breakage rate of the size class i, whereas ���  is the breakage function, i.e., the 

mass fraction of the size class j broken into size class i. The discretization provides iterative matrix 

solutions [2] to Equation 2 as long as ��  is constant, i.e., particles are broken at a constant rate (first-

order breakage kinetics). However, rate of breakage is not constant (non-first-order breakage kinetics) 

particularly when (i) particles are too big (>1 mm) to be broken in the mill [2], or when (ii) there are 
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multi-particle interactions [6] such as cushioning or agglomeration of particles. In this case, Eq.2 

cannot be solved iteratively by using the matrix equations. Alternatively, some scaling (self-similar) 

functions [7–12] can be used as the selection function to solve kinetic PBM, as long as the selected 

function describes the non-linear breakage kinetics [5,13,14]. All the above discussion indicates that 

the solution of the kinetic PBM gets complicated because of the uncertainties in the breakage rate.  

The size-discretized kinetic PBM (Eq. 2) can be rewritten without involving time if the 

size-reduction time is taken very minute. This new model (matrix PBM), can be expressed as a set of 

equations solved in a matrix form [1]. Each row of this matrix represents the size-mass balance 

around each size class:  

�� = ��� ∙ �� ∙ �� + (1 − ��) ∙ �� , �ℎ��� � ≥  � ≥  � ≥  1, ��� = 0       (3) 

��  is the mass fraction of the size class i in the breakage product, �� is the mass fraction of size 

i depleted at breakage, and ��  is the mass fraction of the size class i in the feed. The model can be 

used to describe crushers [15–17] where the retention time of particles is very short. Although the 

matrix model was previously offered to describe grinding mills [18,19], this model can work only if 

grinding is oversimplified as a short-time event. On the other hand, given that grinding is formed by 

too many successive breakage events, it can be solved through an iterative solution of equations 

where each equation describes a successive breakage event on a different particle. This study presents 

a computational algorithm to iteratively solve such equations. Therefore, the algorithm can simulate 

successive breakage events in a size-reduction equipment, allowing us to predict the evolution of 

progeny size distribution. The algorithm iteratively selects the mean particle of a monosize fraction, 

whose mass is further distributed to its progenies through the corresponding breakage distribution 

function. Each iterative calculation is actually the matrix PBM (Equation 3) restricted to a breakage 

event of a single particle; therefore, each calculation can be defined as a pseudo-matrix PBM. The 

overall algorithm is capable to demonstrate a realistic picture of size-reduction by taking account of 

individual breakage events. The time can be incorporated to the algorithm either (i) implicitly as the 

number of breakage events or (b) explicitly if a proper function between grinding time and number 

of breakage events are known. However, the algorithm does not account for (i) useless ball-ball or 

ball-particle impacts that do not produce breakage or (ii) the aggregation or agglomeration of fine 

particles [20,21] occurring at fine grinding. The critical component of the algorithm is the iterative 

selection of particles, which is accomplished by using a probabilistic number generator coupled with 

Mersenne Twister algorithm [22]. This number generator is used to select particles either randomly 

or non-randomly for simulation.  

2. Materials and Methods  

Three narrow size fractions of Portland cement clinker (-3.35+2.36 mm,-2.36+1.7 mm, -1.7+1.18 

mm), an artificial feed of -3.35 mm clinker following GGS distribution (distribution modulus = 0.27, 

size modulus = 3.35 mm), and a single size fraction (-3.35+2.36 mm) of feldspar were used as the 

experimental material. The true densities of the feldspar (2.65 g/cm3) and clinker (3.19 g/cm3) were 

calculated by using water and helium pycnometer, respectively. Portland cement clinker samples 

were ground in a batch ball mill (19 cm x 18 cm) with 25.4 mm or 31.75 mm monosize steel balls at 

56-58 % of the mill speed. The feldspar sample was ground in a planetary ball with 12.7 mm balls 

operating at 300 rpm. The experimental PSDs after grinding were recorded for different grinding 

times.  

The computational algorithm was executed and tested against any experimental PSD through 

the following flowsheet (Figure 1): Using the algorithm with a random or non-random selection 

procedure, a monosize fraction in the experimental feed size distribution (FSD) was selected. Then, 

the mass of the geometric mean of the selected size fraction was distributed to finer progeny fractions 

through an assigned breakage distribution function. Also, the mass of the selected particle was 

calculated assuming that it was a perfect sphere. The size distribution after the iteration was 

calculated, and then updated as the new FSD for the succeeding iteration. The iterations continued 

until the 80 % passing size (d80) of the simulated product exceeded the d80 of the experimental product 

size distribution. The final PSD after the simulation was evaluated with the corresponding 
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experimental product size distribution. Also, the total number of iterations (the number of breakage 

events) was recorded to construct a time-explicit algorithm. All the computations were made by using 

the MATLAB software.  

 

 

Figure 1. The flowsheet for the execution and validation of the computational algorithm  

2.1. Particle Selection Algorithm for Breakage 

The size fractions were selected for breakage either randomly or non-randomly by using a 

random number generator. For random selection, the generator used the Mersenne Twister algorithm 

[22] to produce a pseudorandom integer from a uniform distribution of the size fraction indices. The 

corresponding size fraction of the generated index was further selected for breakage. For non-random 

selection, the generator used the Mersenne Twister algorithm [22] coupled with a binary search tree 

algorithm for weighted sampling [23]. In this case, the index of a size fraction was selected with a 

probability provided in a vector whose elements corresponded to the selection probabilities of the 

indices of all monosize particles. Table 1 demonstrates the specific probability vectors tested for non-

random selection in the simulator. The first vector in Table 1 reflects the relative abundance of size 

fractions in terms of the mass of the monosize fractions. However, the last two matrices were 

considered as empirical values. As the weight % of the size classes (yi in Table 2) may change after 

each iteration, the corresponding vectors that include yi were updated before each breakage event. 

Table 1. The description and formulation of probability vectors used at the simulation of non-

random particle selection. 

Probability vector Formulation Description of the terms 

Mass  ��/ ∑ ���  ��  : the weight % of the size 

class i in the mill feed (or new 

feed) before an iteration. 

��  : the geometric mean size of 

the monosize class i 

n : an empirical constant 

Power (P)    ��
�/ ∑ ��

�
�    

Mass & Power (MP)    (�� ∗  ��
�)/ ∑  (�� ∗  ��

�)�    

3. Results 

Figure 2 demonstrates the experimental PSDs of the -3.35+2.36 mm clinker ground in the ball 

mill, and the corresponding PSDs simulated with random or non-random particle selection with 

‘mass’ probability vector. The breakage distribution functions of the monosize fractions of clinker 

were taken from the short-time grinding tests at the same milling conditions. The results show that 

neither random (Figure 2a) or non-random particle selection with ‘mass’ vector (Figure 2b) cannot 

yield the experimental PSD of the sample ground. Meanwhile, Figure 3 presents the experimental 

PSDs of the ground -3.35+2.36 mm ground clinker, and the corresponding PSDs simulated with non-

random selection through Power (P) and Mass&Power (MP) probability vectors. Although using the 

former cannot produce the experimental PSD (Figure 3a), using the latter can accurately simulate the 
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experimental PSDs (Figure 3b). All the other experimental PSDs can be accurately simulated with 

‘MP’ probability vector, but only some of them are presented for the sake of brevity. 

 

 

Figure 2. The experimental PSD of the -3.35+2.36 mm clinker ground in the ball mill, and the 

corresponding PSDs simulated with random (a) or non-random (b) particle selection with ‘mass’ 

probability vector. Ball size in experimental tests = 25.4 mm, the experimental grinding time = 16 min, 

n exponent in the ‘MP’ probability vector = -4.9.  

 

Figure 3. The experimental PSDs of the -3.35+2.36 mm clinker ground in the ball mill for different 

times, and the corresponding PSDs simulated with non-random particle selection through Power (a) 

and Mass&Power (b) probability vectors. The simulated PSDs are shown with straight lines, while 

the experimental PSDs are shown with symbols. Ball size in experimental tests = 31.75 mm, n exponent 

in the ‘MP’ probability vector ranges between -4.0 and -3.5.   

Table 2 presents the range of ‘n’ exponents to construct ‘MP’ probability vectors for the accurate 

simulation of the experimental PSDs of clinker feeds in different size. The results show that the range 

of ‘n’ gets narrower as the feed size gets smaller.  
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 Table 2. The range of ‘n’ values used in the simulation of particle simulation for predicting the 

experimental PSDs at a wide range of grinding time [0.5-16 min]. Ball size in experimental tests = 25.4 

mm 

Feed Size Range of n [minimum, maximum] 

-3.35+2.36 mm [-4.9,-3.7] 

-2.36+1.7 mm [-4.3, -4.1] 

-1.7+1.18 mm [-3.9, -3.8] 

 

Figure 4 shows the experimental PSDs of the artificial feed of clinker (-3.35 mm), and the 

corresponding PSDs simulated with the ‘MP’ probability vector. Although each monosize fraction in 

the feed is simulated with ‘MP’ probability vector with a wide range of exponents (Table 1), the 

results show that a narrow range of exponents will be sufficient for the accurate prediction of the 

experimental PSDs of the artificial feed. 

 

Figure 4. The experimental PSDs of the artificial feed of clinker (-3.35 mm), and the corresponding 

PSDs simulated with the MP probability vector. The simulated PSDs are shown with straight lines, 

while the experimental PSDs are shown with symbols. Ball size in experimental tests = 25.4 mm, n 

exponent in the ‘MP’ probability vector ranges between -4.0 and -3.7. 

Figure 5 shows the variation of the total number of iterations (number of successive breakage 

events) with the grinding time at some simulations conducted with ‘MP’ probability vectors. The 

results show that the number of successive breakage events can be well fitted to a power function of 

the grinding time in the form of y=Axb. 

 

 

Figure 5. The total number of iterations vs. the experimental grinding time in ball milling. The 

simulations were conducted with ‘MP’ probability vectors. The dashed line represents the power 

function fitted to the data in the form of y=Axb. The experimental setup: ball size = 31.75 mm, mill 

feed = -3.35+2.36 mm clinker. 
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Figure 6 shows the experimental PSDs of -3.35+2.36 mm feldspar sample ground with planetary 

ball mill, and the corresponding PSDs simulated with the MP probability vector. However, for these 

simulations, the breakage distribution functions of the feldspar sample were arbitrarily selected from 

the breakage distribution functions of monosize clinker samples ground in the batch ball mill with 

31.75 mm balls. The results show the simulation is capable to accurately predict the experimental 

PSDs with arbitrary sets of ‘n’ and breakage distribution functions.  

 

Figure 6. The experimental PSDs of the -3.35+2.36 mm feldspar ground in the planetary ball mill for 

different times, and the corresponding PSDs simulated with non-random particle selection through 

Mass&Power (b) probability vectors. The simulated PSDs are shown with straight lines, while the 

experimental PSDs are shown with symbols. Ball size in experimental tests = 12.7 mm, n exponent in 

the ‘MP’ probability vector = -2.43. 

4. Discussion 

The results initially show that random selection of particles for breakage cannot yield the 

experimental PSD of the ground sample (Figure 2a). This strongly suggests that the observed chaotic 

motion of the mill hold-up cannot cause random breakage events inside the mill. Therefore, there 

should be a single or multiple phenomenon causing the particles to participate in the breakage events. 

As non-probability selection with ‘mass’ probability vector cannot produce the experimental PSD 

(Figure 2b), it is likely that particles are not selected for breakage with respect to their abundances in 

the mill-hold up. Given that ‘power’ probability vector selects particles with respect to a power of 

their diameters, the failure of the vector in the simulation (Figure 3a) suggests that the selection of 

particles cannot be attributed to their sizes. This eliminates the reason that the relative strength of 

particles, which is observed to be a function of the particle size [24,25], cannot be responsible for 

particles to participate in the breakage events. The simulation with ‘MP’ probability vector, on the 

other hand, can accurately produce a range of PSDs for different combinations of feed sample and 

grinding environment (Figure 3b, Figure 4, Figure 6). In this non-random selection routine, particles 

are selected for breakage with a probability proportional to the total mass of near-size particles and 

an inverse power of its diameter. Such proportionalities are generally observed while estimating the 

gravitational [26] and surface [27,28] attraction forces between masses of objects. Therefore, the 

particles in the mill hold-up may be participated in the breakage events due to the attraction forces 

between particles and grinding media. However, as there is no current experimental evidence to 

evaluate this speculation; the author encourages the audience to test the presence of such attraction 

forces by means of relevant sophisticated measurement techniques [26,27,29]. Meanwhile, the 

variation of ‘n’ with particle size (Table 1) may indicate some clues regarding the nature of such 

forces: In coarse feeds (+1 mm), the breakage events only occur at fine particles due to the abnormal 

breakage effect [2]. Then, the attraction between balls and fine particles may be dominated by the 

surface attraction, which is reflected with high values of ‘n’. On the other hand, as the feed size gets 

smaller or the mill environment becomes more disruptive, the abnormal breakage effect should 

disappear. In this case, as exemplified in Figure 6, the ‘n’ value approaches to (-2)-(-2.5). Given that 

the length scale (-2) of the gravitational attraction is numerically close to this ‘n’ range, the author 
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suspects that gravitational attraction are causing the breakage events when the abnormal breakage 

effect is reduced or eliminated. 

The abovementioned discussion suggests that a single exponent ‘n’ is sufficient for the 

simulation if the abnormal breakage effect [2] is reduced (Table 2). Even this exponent can be 

estimated by running the time-implicit simulation on a single experimental PSD of a short-time 

grinding test. The results also suggest some simplicity associated with the computation algorithm: 

Firstly, the method can run with only two parameters, namely n and breakage distribution functions, 

which can be arbitrarily selected for different combinations of feed and milling environment (Figure 

6). Also, the time can be explicitly added to the algorithm if the number of successive breakage events 

can be expressed as a power function of grinding time (Figure 5). As the number of parameters in 

this function is equal to 2, there should be 2 or more datasets of grinding time-total number of 

iterations for fitting purposes. Therefore, at least 2 experimental PSD curves should be simulated to 

construct a time-explicit algorithm.  

5. Conclusions 

This study presents a computational algorithm coupled with a pseudo-matrix model to simulate 

the product size distributions (PSDs) of different grinding mills. The algorithm’s applicability and 

accuracy were validated against experimental PSDs from different grinding equipment. The results 

show that the evolution of PSDs at grinding may be due to the surface/gravitational attraction forces.  

The algorithm is simple to construct with few parameters. Even a short-time grinding test will 

be sufficient to execute the time-implicit algorithm if abnormal breakage effects are reduced or 

eliminated. However, running the time-explicit algorithm requires the simulation and evaluation of 

2 or more experimental PSDs. The algorithm can even work with arbitrary sets of parameters that are 

irrelevant to the mill feed and mill environment. 
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