

The 1st International Electronic Conference on Metallurgy and Metals

Ni-based coatings for oil and gas industry fabricated by cold gas spraying

EKATERINA ALEKSEEVA, *,

Margarita Shishkova¹, *, Darya Strekalovskaya¹, Dmitry Gerashchenkov² and Pavel Glukhov³

- ¹ Scientific and Technological Complex "New technologies and materials", Institute of Advanced Engineering Technologies, Peter the Great Saint-Petersburg Polytechnic University, Polytechnicheskaya 29, 194064 St. Petersburg, Russia;
- ² NRC "Kurchatov Institute" CRISM "Prometey", 49 Shpalernaya str., St. Petersburg, Russia, 191015;
- ³ PAO "Severstal", Directorate of Technical Development and Quality, 30 Mira str., 162608 Cherepovets, Russia

- Introduction (Conditions and coatings in the Oil and gas industry)
- Objective
- Experimental
- Results and discussion
- Conclusions

Introduction Operating Conditions

Chemical Influences

- H₂S
- Cl⁻
- CO2
- [H⁺]

Mechanical Influences

Hydroabrasive wear:

- sand
- friction
- flow
- Mechanical loads:
- tensile
- torsion
- cyclic bending
- vibration

Physical Influences

- temperature
- pressure
- decompression

Climatic Influences

- temperature
- ultraviolet
- humidity

Introduction Current Coatings In The Oil And Gas Industry

Introduction Properties And Characteristics Of Nickel Coatings

High corrosion resistance

• protect the base metal of the substrate mechanically, because in relation to steel, nickel coatings are cathodic E0 (Ni) = -0.25 V; E0 (Fe) = -0.44 V)

High wear resistance (microhardness from 250 to 650 kgf \cdot mm $^{-2}$)

Electrical conductivity

Heat resistance (permissible operating temperature up to 650 ° C)

The possibility of obtaining **COMPOSITE COATINGS** based on nickel:

 the introduction of solid particle additives into the metal matrix significantly increases the functional properties of the nickel plating, such as *wear resistance*, *corrosion resistance*, and exhibits excellent *erosion resistance*.

Can be applied to non-metallic substrates

Introduction Applied Methods Of Obtaining Coatings

 obtain nickel-based coatings by cold gas-dynamic spraying and evaluate their applicability for use in the oil and gas industry by studying the effect of the chemical composition (Ni, Ni-Cu, Ni-Zn, Ni-Al2O3, Ni-TiC) on the corrosion and wear resistance of nickel coatings

Experimental Materials and Methods

Potentiostat VERSA

Corrosion tests

Autoclave test

simulation oil and gas conditions

Hydroabrasive test

Microstructure and microhardness investigation

Electron Microscope Tescan VEGA 3 equipped with Inca X-Max EDS analyzer

Vickers microhardness tester Reichert-Jung Micro-Durmat 4000

Experimental Composition and thickness

Ni-Zn coatings

Ni-Cu coatings

Sample	Chemical composition, wt.%	Thickness, μm
Ni90-Cu10/150	Ni - 90%, Cu - 10%	150
Ni90-Cu10/40	Ni – 90%, Cu – 10%	40
Ni60-Cu40/120	Ni – 60%, Cu – 40%	120
Ni60-Cu40/50	Ni – 60%, Cu – 40%	50
Ni60-Zn40/100	Ni – 60%, Zn <i>–</i> 40 %	100
Ni60-Zn40/200	Ni – 60%, Zn – 40%	200
Ni90-Zn10/150	Ni – 90 %, Zn – 10 %	150
Ni90-Zn10/50	Ni – 90%, Zn – 10%	50
Ni60-Al ₂ O ₃ 40/130	Ni –60%, Al ₂ O ₃ – 40%	130
Ni60-Al ₂ O ₃ 40/60	Ni – 60%, Al ₂ O ₃ – 40%	60
Ni100/30	Ni – 100%	30
Ni90-TiC10	Ni – 90%, TiC – 10%	70
Ni60-TiC40	Ni – 60%, TiC – 40%	70
Ni50-Cu50-TiC40 (MA) Mechanically Alloyed	Ni – 50%, Cu – 50%	30

Results Characterization of corrosion properties

Corrosion rate (in mm per year) of nickel coatings, calculated using electrochemical tests in a 3% NaCl solution with pH = 2.5

The average values of porosity

Туре	Porosity, unit / cm2
Ni-Cu	0,6
Ni-Zn	2,1
Ni-Al ₂ O ₃	0,5
Ni	1,1
Ni-TiC	1,1
Ni-Cu-TiC (MA)	1,2

Corrosion rate (in mm per year) of nickel coatings in a simulated oil and gas

Adhesion strength values before and after the autoclave test

Adhesion before, MPa Adhesion after, MPa

Results Characterization of wear properties

The rate of hydroabrasive wear of coatings for: 0.5 hour; 1 hour

0,7

0,6

0,5

0.4

0.3

0,2

0,1

0

The average values of microhardness of the studied coatings

in 1 h; g/h

in 0.5 h; g / h

Sample	Microhardness, HV
Ni-Cu	90
Ni-Zn	170
Ni-Al ₂ O ₃	130
Ni	185
Ni-TiC	90
Ni-Cu-TiC (MA)	100

Conclusions

- 1. Nickel-based coatings are more resistance to hydroabrasive wear than industrially used non-metallic coatings.
- 2. The coatings based on Ni-Zn have the lowest corrosion characteristics (in conditions simulated oilfield conditions the corrosion rate is 0.17-0.2 mm / year), the highest wear resistance characteristics. However, the protective effect of zinc allows them to be used as corrosion-resistant, at the same time to be economically attractive.
- 3. The samples of Ni-Cu coatings have high corrosion resistance, but low wear resistance due to their low hardness. Applying coatings from mechanically alloyed powders of nickel-copper is practically not applied without TiC.
- 4. Al2O3/TiC additives give ambiguous results in the studied properties. Specimens with Al2O3 have a low hydroabrasive wear and high corrosion resistance; the introduction of particles TiC was not effective in improving these characteristics.
- 5. All the studied coating specimens have a sufficiently high adhesion.
- 6. Thickness of 40 60 microns provides sufficient performance of the studied coatings.