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Abstract-Meteorological measurements for weather forecasting and climatology have been 

carried out on a regular basis for centuries. There are several meteorological parameters like 

temperature, rainfall, humidity, speed of the wind, etc.  By studying and observing these 

parameters, one can tell about the air pollution of an area or maybe the humidity present in 

the atmosphere. One can also predict cyclones or any natural calamities related to them. 

Numerous methodologies and strategies have been adopted for the analysis of these 

parameters.  However, the data acquired can only be evaluated and interpreted after having 

statistically recorded medium-term and long-term atmospheric conditions. One of the most 

efficient tools for analysis is the soft computing techniques. These techniques have numerous 

advantages, as these techniques can be used for prediction studies and also for finding out any 

trends or patterns.  In this paper, several soft computing techniques like linear regression, 

logistic regression, k-nearest neighbor, random forest regression (RFR), and support vector 

regression (SVR) are used for modeling of these meteorological parameters, and a 

comparative analysis has been shown. The linear regression technique is giving very poor 

results for the modeling of most of the parameters. RFR and SVR mostly showing high 
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accuracy rates for most of the meteorological parameters and these two techniques are quite 

efficient in comparison to other methods for showing the trend.  

Keywords:  Rainfall, Temperature, Random Forest Regression, Support Vector Regression, k-

Nearest Neighbor 

1   Introduction 

Meteorology is a discipline of atmospheric science that deals mainly with weather forecasting 

issues. The study of weather forecasting is dated back up to several centuries, and with the due 

passage of time, new techniques have come into existence to enhance this forecasting in a much 

more efficient way. Meteorological processes are defined and quantified by several variables like 

temperature, air pressure, water vapour, etc. Several scales have been defined and used to predict 

the trends of weather on local, regional, and global levels (Hellmann, 2007). Due to the 

disturbances within the atmosphere, there can be some abnormal behavior in the meteorological 

parameters, but this abnormality is very short-lived. To know about the local climate of a place, 

we have to be well acquainted with the lower atmospheric phenomenon, and this phenomenon 

can be described by meteorological parameters. These parameters are very helpful for studying 

air pollution, avalanche warning, forestry, agriculture, water supply, town planning, etc. For 

example, if one has knowledge about solar radiation as well as air temperature and humidity, 

then that fellow can understand about chemical reactions of the pollutants present in the air. So a 

detailed study of air pollution can be done (Rösemann, 2011). Similarly, the understanding of 

cyclone genesis, its development, and features can be done with the help of meteorological 

parameters. This study is a very challenging subject, and it had been studied continuously for the 

last few decades till the present time (Henderson-Sellers, 1998). Without analyzing the observed 

atmospheric variables, it is impossible to do weather forecasting. This kind of analysis invariably 

involves the statistics in one form or the other.  Statistical methods are used for decades for 

analysis of these parameters. A mainly concise introduction to the topic of statistical modeling of 

meteorology is given by a mathematical statistician Walter Freiberger, Brown University “We 

believe that the behavior of the atmosphere is governed by certain dynamic equations, namely 

the Navier-Stokes equation, although we shall in practice certainly wish to use one of the several 

model atmospheres proposed for forecasting purposes. Statistics now come in through our 

ignorance or uncertainty of the initial weather field. This uncertainty will correspond to a 

probability superstructure imposed on the ensemble of possible solutions. And prediction would 

proceed from there.” The data acquisition of the meteorological parameters can be evaluated and 

interpreted with various statistical and probabilistic methodologies. The variation in the various 

manifestation of the weather is very dynamic in nature because weather patterns can change very 

rapidly within a day also. In general, the weather phenomenon can vary day to day, month to 

month. The combination of the methods of getting strict dynamical solutions or what is also 



known as deterministic solutions, with the technique of describing quantitatively the initial and 

resulting in following uncertainties of meteorological variables is what we have known as the 

stochastic-dynamic prediction. The origin for stochastic-dynamic prediction is elementary; the 

zero or initial conditions in the time-dependent solution of the deterministic equations are mostly 

unknown. Therefore even if the model is made and available, the integration is intrinsically 

probabilistic in nature despite the fact that not overtly recognized as being so. By defining initial 

conditions in terms of probability density functions, the feature of the collection of possible 

initial conditions and adding equations were explaining the conservation of the probability, 

mainly involving the moments of probability distribution functions. So to put different data’s 

which shows huge variation, in the order, we need to deal with the frequencies and averages. 

Most of the known tests of the hypothesis in the statistical domain and, in particular, the variance 

analysis are based on the assumption that the variables or parameters observed and recorded, 

more often than not, these variables are normally and homoscedastically distributed. Another 

assumption is that the expected effects of various methodologies are additive. The way workflow 

of the experiments has been designed, these two above-mentioned assumptions mostly dominate. 

At several points of the time, these assumptions are clearly contradicted by the observations, so 

at those moments, we conventionally make arduous efforts to approximate the analysis of 

variance situation by an appropriate transformation of the observable variables. In several cases, 

this conventional process is very successful. However, if we are working on the rainfall data, the 

rainfall amounts ‘X’ per experimental unit (day, storm, etc.), the hindrances are very 

considerable. The experimental study of weather science has two disadvantages in comparison to 

classical experimental studies like agriculture. First, in agricultural studies, a single experiment 

may test several parameters without any time loss. But in the case of weather studies, this sort of 

experiment is not possible. Second, in the case of a classical experiment, time duration maybe 

about a year or so, but for weather science experiments, the duration of experimental time 

increases significantly. Because of these two above-mentioned disadvantages, there is a 

difference in the relative importance of certain factors of the problem of the experimental set-up 

and in the problem of the suitable statistical test. For classical instances, there is the only trivial 

increase in cost. An experimenter with all his literature surveys and knowledge can set up a 

design that how long the experiment will be carried and what sort of results are expected. If 

somehow the mistake becomes larger than what is anticipated, that is repeatable, but the loss is 

not too havoc because the experimental setup can be carried out during the next year. But for 

weather studies, this kind of scenario may not exist because weather conditions may not be the 

same for two consecutive years for the same month. So the experimenter needs to be extra 

cautious while carrying out the experiment with weather studies (Freiberger and Grenander, 

1965; Julian and Murphy, 1972; Neyman et al., 1969). In recent times, most analysis has been 

done with different numerical prediction methods. These models are the mechanism for 

combining the records recorded on an unequally spaced-net with the best guess of conditions 

existing at the analysis time. Such methods have practical advantages, a quantitative treatment of 

what is really done in interpolating from the unequally spaced observing net to the geometric 



grid of the numerical prediction model is almost impossible. An easy, purely statistical approach 

is to reduce the variation in between the calculated value of a scalar variable inside the grid point 

and the actual value recorded for that grid in the field with the help of some sensors. The 

development of the purely statistical theory was first formulated by Soviet scientists, mainly by 

Gandin in 1963, and it appears under the subject of Optimum Interpolation Theory. This theory 

tells us about the statistics calculated on the unequally-spaced observing net (covariance 

functions in space and possibly time) to interpolate to the geometric grid of the numerical model. 

To execute this theory, there is a mandatory assumption that the structure of the atmospheric 

scalar field is- I) isotropic II) homogeneous in time and space domain and III) homoscedastic i.e. 

space-Time plane of the scalar field, is independent of the absolute value of scalar itself. But 

unfortunately, these assumptions are not being fulfilled, so the validity of this theory is severely 

impeded. Now the scientific community started to do work for relaxing the severity of these 

assumptions. So it seems that the severity will only be reduced, and some progress will be made 

if- I) more computational power and II) more sophisticated theories are available. From a purely 

statistical least-square method, the “best analysis” is not considered, but instead of that “best 

analysis” is taken from those approaches that incorporate some dynamic constraints. Now with 

this change, a new class of analysis schemes comes into existence. In the meteorological science 

domain, the statistical computation of reliant variables has been performed as a function of two 

independent variables (space and time). The analysis is mostly concentrated upon second 

moments or the variances and co-variances. For the past few years, a great amount of work has 

been done for analyzing the meteorological variables in the Eulerian frame of reference. These 

variables have two different spectra i.e. temporal and spatial spectra. Earlier, the temporal 

spectrum of meteorological data used as an analytical analysis tool mostly by those people who 

calculate atmospheric turbulence. The interpretation of the Eulerian time spectra for 

meteorological variables is difficult because these variables show non-linear and dispersive 

nature in significant wave modes. To remove this non-linearity time series concept has been 

introduced. The advancement of Fast Fourier Transform (FFT) has made the analysis of 

spectrum radically more competent by diminishing the computational time and by giving full 

range of harmonic coefficients (Julian and Murphy, 1972). Time series analysis of 

meteorological data was also performed by some researchers (Cuervo et al., 2018). 

Some of the statistical and soft computing methods used in this work for the analysis of some 

meteorological parameters are described.  

 

1.1 Linear Regression Model     

In the statistical domain, linear regression is defined as the linear method of modeling the 

relation among scalar quantity (or dependent variable) with explanatory variable (or independent 

variable). In this method, the relationship is tuned using the linear predictor function, whose 

unidentified model variables are calculated from the data. This model has a focus on the 



conditional probability distribution of the output given the value of predictors rather than on the 

joint probability distribution of all of these variables. This analysis has extensive practical 

application. If the aim is prediction and forecasting, then the linear regression model is used as a 

fitting for a predictive model to an observed data set of values of the output and independent 

variables. This method uses the least square technique (Freedman, 2009; Seal, 1967; Yan and Su, 

2009).  

1.2 Logistic Regression Model 

This model use probability for predicting the result. Each of the results detected is given a 

probabilistic value between 0 and 1and sum adding to one. This technique uses the logistic 

function to evaluate binary dependent variables, although several difficult extensions still exist. 

Mathematically, two possible values of the dependent variable are always associated with a 

binary logistic model, and these two values are 0 and 1. In this model, one or more independent 

variables are linearly combined, and their combining value is marked as 1. These independent 

variables are mostly of two types one is a binary variable, and another one is a continuous 

variable. The analogous probability of the value marked “1” can fluctuate between 0 (surely the 

value “0”) and 1 (surely the value “1”), hence the labeling. The function that converts the log-

odds to the probability is the logistic function, hence the name. The probit function model can 

also be used instead of the logistic model, and this probit model has a different sigmoid function. 

The major feature of the logistic model is that if we increase one of the independent variables, it 

multiplicatively increases the odds of a given result at a steady rate, with each self-determining 

variable connected with its own parameter. If there are more than two levels of the dependent 

variable, then this binary logistic regression model can be extended to multinomial logistic 

regression. In this kind of logistic regression, categorical outputs with more than two values are 

modeled (Walker and Duncan, 1967).    

1.3 k-Nearest Neighbor (k-NN) Algorithm 

This algorithm is used for classification and regression. It is non-parametric in nature. For both 

classification and regression, the input has k nearest training examples in feature space. The 

output is reliant on if k-NN is used for either classification or for regression. In the case of 

classification, output comes as class membership. Classification of the object is done on the basis 

of plurality votes from its neighbors. The object is defined for that class that is most familiar 

among its k nearest neighbor. The value of k is typically small, and it is a positive integer. If the 

value of k is 1, then the object is allocated to the class of that single nearest neighbor. For the 

case of regression, the output is like the property value of the object. The average value of all the 

k nearest neighbor defined as property value of the object. In this algorithm there is a local 

approximation of the function under consideration, and all the calculation is postponed until the 

classification has been performed. This algorithm is a kind of instance-based learning (Altman, 

1992; Garcia et al., 2011).   



1.4 Random Forest Regression  

Random forest is used for classification based on the collection of the learning algorithm. This 

technique can be used for the prediction of the continuous random variable. This regression and 

classification technique models a collection of decision trees to set a date. In each of the trees, 

the data are repetitively divided into more identical units, which are usually defined as nodes, for 

improving the prediction analysis of the response variable. Values of the prediction parameter 

are the basis of the split points. So the variables used for data splitting are considered as 

important descriptive variables—random forest models different decision trees to a preexisting 

number of bootstrapped data sets. In the random forest methodology, the output is the mode of 

the classes or average forecast of individual trees. Tim Kam Ho first proposed the algorithm for 

random forest regression using random subspace method (Barandiaran, 1998; Breiman, 2001; 

Everingham et al., 2016). 

1.5 Support Vector Regression 

Support vector algorithm is one of the tools of machine learning, and it works on feed-forward 

network mechanism. In this method, the learning algorithm is associated with supervised 

learning models that evaluate the data used for regression analysis and classification. Support 

vector regression is helpful for solving quadratic equations with linear constraints. The SVM is a 

linear machine of one output y(x), working in the high dimensional feature space formed by the 

nonlinear mapping of the N-dimensional input vector x into a K-dimensional feature space 

(K>N) through the use of the nonlinear function φ(x). The number of hidden units (K) is equal to 

the number of so-called support vectors that are the learning data points closest to the separating 

hyperplane (Cortes and Vapnik, 1995; Osowski and Garanty, 2007; Vapnik, 1998).  

 

2 Materials and Methods 

The meteorological data has been obtained from India Meteorological Department (IMD), Ozone 

Unit Banaras Hindu University. The data is of the Varanasi region. In this study, we have used 

data from 2014 to 2016 to train our models and data from 2017 to test our model. The 

meteorological parameters for consideration are rainfall, wind speed, relative humidity, and 

temperature. Daily data has been converted to monthly data by taking the average of a month. 

The value of the wind speed is given in Knots, but for calculation, we have converted this value 

into kilometer per hour by multiply the knot value by 2. Data pre-processing is not required in 

this case as there are no missing values. The numbers of observations for the meteorological 

parameters are given in Table 1. The flowchart of methodology has been given in figure 1.  

 

 



 

Figure1.  Flowchart of the methodology 

 

Table1. Parameters in the dataset 

 

 

 

 

 

 3 Results and Discussions  

The calculation and analysis have been done in a Python environment, and in this case jupyter 

notebook has been used. With the help of different soft computing techniques, we have predicted 

some meteorological parameters for the year 2017 for the Varanasi region.  

 

 

 

 

 

 

 

 

 

Parameter Records Units 

Temperature 1461 °C 

Relative Humidity 1461 % 

Rainfall 1461 Millimeter (mm) 

Wind Speed 1461 Knots (converted to Km/h) 

 
 

Figure2. Temperature prediction Figure3. Humidity prediction 



 

 

 

 

 

 

 

 

 

 

If one can analyze these comparative graphs (figure 2, figure 3, figure 4, and figure 5) for the 

parameters, then one can find that for temperature, and humidity prediction, the random forest 

regression method gives the highest accuracy. But for rainfall prediction, radial basis function 

(RBF) has the highest accuracy. RBF is a form of support vector machine (SVM). Lastly, for the 

wind speed forecast, the polynomial support vector machine (SVM) has been most accurate. It 

has also been seen from the above graphs that the accuracy percentage for wind speed data is the 

least for all the statistical methods applied to it. Even for the rainfall, the accuracy percentage is 

somewhat low. The advanced soft computing methods like random forest and support vector 

machines show a high accuracy rate in comparison to the linear regression technique. If more 

data can acquire then more improved results, one can expect.   

 

 

4 Conclusions  

Meteorology is very important because life cannot be sustained without air, especially oxygen. 

Weather forecasting plays a very important role in urban planning. Prediction of the weather for 

a long duration is also very vital for agricultural purposes. The study of the parameters related to 

meteorology also helpful to monitor global warming patterns. In short, meteorological 

parameters plays a very important role in our lives. Therefore the study and analysis of these 

parameters are also very essential. Soft computing techniques can be used very widely to analyze 

these parameters. These techniques can also be used for analyzing the trend and pattern. Several 

methods are applied, and that yields different results for different parameters. 

 
 

Figure5. Wind speed prediction 

 

Figure4. Rainfall prediction 
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