
 

 
 

 

 
Proceedings 2021, 68, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/proceedings 

Proceedings 

Deep Neural Network Recognition of Shallow Water Corals in 

the Gulf of Eilat (Aqaba) † 

Alina Raphael 1,*, Zvy Dubinsky 1, David Iluz 1,3, Jennifer I. C. Benichou 1 and Nathan S. Netanyahu 2 

1 The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University,  

Ramat-Gan 5290002, Israel; dubinz@mail.biu.ac.il (Z.D.); iluzda@gmail.com (D.I.); jeniiii.bee@gmail.com 

(J.I.C.B.) 
2 Department of Computer Science, Bar-Ilan University, Ramat-Gan 5290002, Israel; nathan@cs.biu.ac.il 
3 Department of Environmental Sciences and Agriculture, Beit Berl College, Beit Berl 4490500, Israel 

* Correspondence: alina.raphael@live.biu.ac.il (A.R.); creativeacs@gmail.com (X.X.);  

Tel.: +972-3-972-3-5318283; Fax: +972-3-7384058 

† Presented at the 1st International Electronic Conference on Biological Diversity, Ecology and Evolution,  

15–31 March 2021; Available online: https://bdee2021.sciforum.net/. 

Abstract: We describe the application of the deep learning computerized methodology to the recog-

nition of corals in a shallow reef in the Gulf of Eilat, Red Sea. This project aimed at applying deep 

neural network analysis, based on thousands of underwater images, to the automatic recognition of 

some common species among the 100 species reported to be found in the Eilat coral reefs. This is a 

challenging task, since even in the same colony, corals exhibit significant within-species morpho-

logical variability, i.e., age, depth, current, light, geographic location, and inter-specific competition. 

Since deep learning procedures are based on photographic images, the task is further challenged by 

image quality, distance from the object, angle of view, and light conditions. We produced a large 

dataset of over 5000 coral images that were classified into eleven species used in the present deep 

learning machine classification. We demonstrate the efficiency and reliability of the method, as com-

pared to painstaking manual classification. We demonstrated that this method is readily adaptable 

to include additional species, providing an excellent tool for the benefit of future studies done in 

the region, allowing real time monitoring the detrimental effects of global climate change and an-

thropogenic impacts on the coral reefs of the Gulf of Eilat and elsewhere, and assessing the success 

of bioremediation efforts. 

 

1. Introduction 

One of the major challenges in the field of contemporary ecology is the documenta-

tion of ecosystem change over time. Among coastal marine biota, coral reefs are home to 

a unique hotspot of biodiversity. In the last decades, coral reefs are undergoing a severe 

decline worldwide [1–3] due to a combination of ocean acidification [4,5], and seawater 

warming [6,7], their adverse impacts intensified by anthropogenic eutrophication and 

pollution [8]. These bring about both the decline in live reef cover and a decrease in coral 

species diversity [1]. Hence it is of paramount importance to monitor and document the 

rates of reef decline and identify the relative importance of stressors in each reef. An ad-

ditional benefit of automated analysis of reef images is its potential as a tool to evaluate 

the long-term success of bioremediation projects of damaged coral reefs [9] and reef pro-

tection measures. 

The use of artificial intelligence (AI) to solve the time-consuming, tedious manual 

classification of coral species and determination of their abundance in real-time, is a Her-

culean task by itself due to the immense numbers of necessary images and their examina-

tion. The automated Deep learning (DL), a branch of AI, has the potential of solving this 

problem efficiently, far exceeds in reliability and accuracy human reef documentation and 
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monitoring. Like the human brain, the more data the computer learns under the DL pro-

gram, the better it becomes at distinguishing among classes of coral species in the present 

application. 

The highly diverse of the Gulf of Eilat (Aqaba) coral reefs are of special scientific in-

terest as one of the most Northern reefs, as well since they are the main basis of the econ-

omy of surrounding communities in both Israel and Jordan. They are highly diverse [10], 

but have suffered from a sequence of disasters, including a rare low tide in 1970 [11], the 

recovery from which was impeded by repeated oil pollution following the closure of the 

Suez Canal between 1967 and 1975 [12]. The subsequent recovery  of the gulf’s reefs was 

slowed down again by the episode of the cooling of the gulf’s waters due to the eruption 

of Mount Pinatubo in 1991. That event caused erosion of the gulf’s thermocline and led to 

deep mixing of its waters, enriching surface waters with nutrients. The resulting prolifer-

ation and subsequent decomposition of seaweeds smothered some 25% of the juvenile 

corals [13]. The anthropogenic eutrophication of the gulf due to the increase in fish farm-

ing until the farm closing [14], also reduced the transparency of its waters by increasing 

the concentration of phytoplankton [15]. These events, as well as the forthcoming Red-

Dead Canal, call for frequent, detailed monitoring of any changes in the situation of the 

coral reefs of the Gulf, as are evident in the reduction of live coral cover and species bio-

diversity. 

Since its early development, DL has been used in human facial discrimination [16], 

handwriting recognition [17], and forensic applications, such as fingerprint identification 

[18] and voice analysis [19]. 

DL has already been applied to coral reef studies, in which it was used to discriminate 

among benthos types: sand, urchins, and three types of branched corals: brain coral, mas-

sive favids, and dead coral [20], as well as to distinguish between healthy and bleached 

corals (see, e.g., [21,22]. Shihavuddin et al. [20] demonstrated the capability of DL to iden-

tify five coral genera from large assemblages of underwater images. In a recent study 

identification among branched and brain corals, was reported [23]. 

In their research, Gómez Ríos et al. [23] also distinguished among favids, brain coral, 

and three branched coral types: I, II, and III (an urchin, dead corals, and pavements based 

on an image mosaic). 

Among DL studies at species level discrimination the following datasets are note-

worthy: 

The first dataset is the Pacific Labelled Corals dataset. That contains 5090 images from 

four locations: (1) Mo’orea (French Polynesia), (2) Northern Line Islands, (3) Nanwan Bay 

(Taiwan), and (4) Heron Reef (Australia). Pacific Labelled Corals dataset contains: 251,988 

annotations from these four locations done by a coral reef expert using a random point 

tool. In addition six experts cross-annotated 200 images from each location [21]. 

The second dataset is the Mo’orea Labeled Corals (MLC) dataset that includes five 

coral classes: Acropora, Pavona, Montipora, Pocillopora, and Porites, and four non-coral clas-

ses: crustose coralline algae, turf algae, macroalgae and sand are included in the Mo’orea 

Labeled Corals (MLC) dataset containing over 400,000 human expert annotations of 2055 

Mo’orea island survey images (http://vision.ucsd.edu/datasetsAll). 

For DL of a reef, there is no need to sample small fragments of corals for the subse-

quent tedious identification in the laboratory. DL enables classification to be done directly 

on a large amount of photographs, in minimum time. 

The novelty of the present study is applying DL, based on imaging, and its fully au-

tomated methodology to recognize eleven common coral types from among the species 

reported in the Gulf of Eilat [11]. We applied DL to over 5000 underwater images taken 

specifically by us from a shallow reef in the Gulf of Eilat, with the aim of documenting the 

distribution of the test types in the sample reef. 

We demonstrated the power of DL, using shallow coral reefs in the Gulf of Eilat for 

comparison with its efficiency in other reef sites. That site allowed us to compare our DL 

data with the detailed manual coral surveys previously conducted on these reefs. 
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2. Corals and Reefs 

The nature and global importance of corals and the rapid destructive impact of 

Global Climate Change call for extensive and fast indexing and monitoring. Coral reefs 

cover less than 1% of the total area of the oceans and seas, yet they are the main repository 

of oceanic biodiversity (25% of all marine species) [24]. Extant hermatypic (reef-building) 

coral species are estimated at 3235 [24], of which 100 were recorded in Eilat, Gulf of Aqaba, 

Northern Red Sea [10]. Hexacorals, based on six fold symmetry, or scleractinian corals are 

the most important hermatypic organisms [25]. 

The decline of reefs leads to the collapse of their entire complex ecosystem depending 

on the calcium carbonate skeletons of the corals intricate reef structures, for food and shel-

ter. Hermatypic corals are home to symbiotic algae living within their cells in specialized 

organelles, the symbiosomes. Called zooxanthellae by their first reporter, Brandt [26], 

these greenish microalgae limited to sunlit shallow waters (~0–120 m), provide the corals 

with energy through their photosynthesis [27,28], which also stimulates calcification [29]. 

In most corals, the tentacles are retracted by day and spread out at night [30] to catch 

plankton and other small organisms, while avoiding diurnal coral-feeding predators. This 

behaviour also optimizes the supply of oxygen for nocturnal respiration. 

Unlike in shallow water, corals satisfy their energy needs in the deep water and dim 

light by zooplankton consumption, as an energy supplement to the algal light-limited 

photosynthetic products see review by Dubinsky and Iluz [28]. 

The photosynthetic activity of the zooxanthellae, raises the internal pH of the coral 

facilitating the skeletal calcification by “light enhanced calcification” [31,32], a paradigm 

recently challenged by Cohen et al. [33]. Conversely, ocean acidification makes coral cal-

cification more difficult. 

3. The Future of Coral Reefs 

Coral reefs are exposed to many dangers because of global climate-change effects [34,35], 

blast and cyanide fishing [36], coral collection the marine coral aquarium trade [37], sunscreen 

use [38], and light pollution interference with lunar cycle reproduction timing [39]. SCUBA 

diving pressure [40]. Anthropogenic eutrophication, acts synergistically with all the above 

listed detrimental factors, stimulating fast seaweed growth, that easily outcompete the slowly 

growing corals. The ensuing algal blooms, smother the coral colonies and prevent the settle-

ment of juveniles [41]. Kaneohe Bay, a coral reef ecosystem at Oahu, Hawaii, illustrates the 

sensitivity of coral reefs to nutrient enrichment resulting from treated sewage disposal, lead-

ing to the reversible proliferation of seaweeds [42]. Fish cage farming released nutrients that 

affected the coral reefs in Eilat by causing deterioration in water quality due to eutrophication 

and by promoting seaweed growth and phytoplankton proliferation reducing the Gulf’s wa-

ter transparency, thus reducing light necessary for symbiont photosynthesis, interfering with 

reproduction, increasing bio-erosion and epizootic infestation [14]. 

Coral species differ in their tolerance to climate change and coral bleaching [43]. Cor-

als experience bleaching as water temperature increases and causes loss of the zooxan-

thellae, and subsequently of live coral tissue, resulting in wide spread coral mortality fol-

lowed by reef destruction. Unless the algal population recovers within weeks, the bleach-

ing results in widespread reef mortality [44]. The ongoing increase in atmospheric carbon 

dioxide since the industrial revolution leads to ocean acidification or lowering of ocean 

pH, and affects corals negatively by shifting the balance from skeletal aragonite deposi-

tion toward its dissolution [4]. In addition, light pollution by artificial light, even at the 

weakest intensities [45,46], can cause the disruption of coral reproduction that is con-

trolled by lunar periodicity [47,48]. The planned Red Sea–Dead Sea Conveyance [49] will 

cause a change in the regime of the gulf currents [50]. Such a change could reduce the 

supply of larvae of corals and other reef organisms, and have a far-reaching deleterious 

impact on reef systems. 
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The real-time characteristics of DL tools are crucial for the rapid detection of reef 

damage allowing implementation of bioremediation measures. The DL characteristics are 

valuable tools assuring the health and long-term survival of the coral reefs in the Gulf of 

Eilat and worldwide. 

4. Deep Learning 

The efficiency of the methodology of DL, for the classification of coral species consists 

of algorithms that reveal and extract common-patterns and features from large image da-

tasets. Two popular algorithms applied to coral reef data are the convolutional neural 

network (CNN) [21] and deep belief net (DBN) [21]. A generic structure of CNN is a multi-

layer, feed-forward, supervised neural network that recognizes objects from spatial-based 

images with little or no pre-processing. It consists: (1) feature extraction (convolution 

layer); (2) distortion invariance (sub-sampling layer); and (3) classification (output layer). 

DBN, consists of probabilistic models composed of multiple layers of random variables 

[51]. 

Any coral-reef classification consists of five main steps: 

1. Taking sufficient high quality underwater images 

2. Detecting the chosen coral and cropping its image 

3. The cropped images are scaled to 200 × 200 pixels 

4. Images are pre-processed to compensate for different imperfections (blurring, col-

our change, sunlight wave patterns, sky colour, nekton scattering effects etc. 

5. After pre-processing, each one of the coral species is labelled. 

In the case of an automatic model Steps 3 and 4 are not required. 

Traditional machine learning methods need extensive domain expertise, human in-

tervention, and are only capable of what they were originally designed for. 

Additional works on growth modelling and quantification of morphological varia-

tion in coral types (see, e.g., Kruszyński et al. [52]; Chindapol et al. [53]) Kruszyński et al. 

studies focused on analysis of three-dimensional (3D) images of corals scanned by X-ray 

Tomography. 

Chindapol et al. modelled the effects of flow on colony growth and shape, using an-

alyzed advection-diffusion equations. 

The increased interest in DL has also been recently reflected in the analysis of previ-

ously published coral datasets. Specifically, recent work [22] has demonstrated the effi-

ciency of neural networks and DL in distinguishing among various marine benthos com-

ponents such as bare ground, seagrass meadows, algal cover, sponges, and identified 

some coral species. Additional recent work has shown the capability of neural networks 

and DL to distinguish among coral species and live corals from bleached colonies (see, 

e.g., [21,22]). 

CNN representations were coupled by Mahmood et al. [22] combined with manually 

obtained colony parameters. They used algorithms based on the information present in 

the image. These authors extracted from VGGnet CNN images with a 2-layer multilayer 

perceptron (MLP) classifier [trained with the Mo’orea Labeled Corals (MLC) dataset]. 

They achieved 77.9% accuracy. 

Mahmood et al. [54], reviewed the power of DL for machine monitoring of coral reefs. 

Mahmood et al. (2016) [55] reported a decrease trend in coral density and species 

numbers of the of the Abrolhos Islands reefs. Their analysis was based on pre-trained 

CNN images from VGGnet. They proved the reliability of their classifier on unlabelled 

coral image mosaics. 

Mahmood et al. (2018) [56] used CNN based features and ResFeats to annotate corals and 

demonstrated the temporal changes in their association. They applied generic features from 

VGGnet and ResNet to classify corals and non-corals. They analysed unlabeled coral mosaics 

of three Abrolhos Island sites generating maps for the aforementioned mosaics. 
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Mahmood et al. (2020) [57] applied DL computerized characterization of annotation 

of 

kelp species. They presented an automatic hierarchical classification method to clas-

sify kelps in images collected. That study summarises the considerable advantages of us-

ing deep residual networks (ResNets) over traditional, manual classifications of the same 

reefs. They showed that the sibling hierarchical training approach outperforms the tradi-

tional parallel multi-class classifications by a significant margin (90.0% vs. 57.6% and 77.2% 

vs. 59.0%) on Benthoz15 and Rottnest datasets. They used an application to study the 

changes in kelp cover over time for annually repeated AUV surveys. 

Mahmood et al. (2020) [58] evaluated how well features extracted from deep neural 

networks, transfer to underwater image classification. They investigated the effectiveness 

of transfer learning of the ResFeats. They proposed new image features (called ResFeats) 

extracted from the different convolutional layers of a deep residual network pre-trained 

on ImageNet on MLC, Benthoz15, EILAT and RSMAS datasets. 

Gómez-Ríos et al. [23] included more corals than previous studies by applying three 

CNNs: Inception v3 [59], ResNet [60], and DenseNet [61] (Supplementary Table S1). 

Two datasets were analysed: EILAT and RSMAS, both of which comprised patches 

of coral images discriminating branched and massive colonies. EILAT contains eight clas-

ses (sand, urchin, branched type I, II, and III corals, brain coral, favid coral, and dead coral) 

and 1123 images. RSMAS contains 14 classes, including 9 classes of the following sclerac-

tinian coral species: Acropora cervicornis, Acropora palmata, Diploria strigosa, Montastraea cav-

ernosa, Meandrina meandrites, Montipora spp.; Siderastrea sidereal, Colpophyllia natans (a boul-

der brain coral), and the colonial fire coral Millepora alcicornis (a species of hydrozoa with 

a calcareous skeleton). The other five classes included in the RAMAS dataset are not coral 

species: Diadema antillarum is a sea urchin, Gorgonians are a genus of soft corals in the 

family Gorgoniidae, Palythoas palythoa is a genus of anthozoans in the order Zoantharia, 

and sponge fungus and tunicates are marine invertebrates of the subphylum Tunicata. 

The RSMAS dataset includes 776 images. 

CoralNet was conceived by Beijbom et al. [9,62]). In early 2019, Williams et al. [63] in 

a large study showed that the automated annotations for CoralNet Beta, produced benthic 

cover estimates comparable to controls gathered by human annotation. 

CoralNet (https://coralnet.ucsd.edu/) uses deep neural networks for fully or semi-

automated annotation of images. It also serves as a convenient, user-friendly collaboration 

platform. 

HoeghGuldberg states that “CoralNet will allow the world’s scientists to quickly as-

sess the health of endangered coral reefs at scales never dreamed of before”, in 

(https://blogs.nvidia.com/blog/2016/06/22/deep-learning-save-coral-reefs/). 

BenthoBox image labelling system for ecologists allows storing images of the dataset. 

The software uses learning algorithms to recognise ‘tagged’ seabed features such as 

sand, algae, sponges and corals. 

5. History of Coral Classification in the Gulf of Eilat 

Traditional methods have been used in Gulf of Eilat research studies for coral classi-

fication since the pioneering work by Loya and Slobodkin [10]. Some 100 coral species 

were listed in their study. 

Whenever confronted with doubt concerning the species of a certain coral underlying 

a transect, a small piece was sampled and manually identified by a taxonomist [11], a 

tedious and destructive practice based on limited sample size. 

These surveys were based on colour photographs taken by a camera with a flash at-

tachment. Close-ups were taken by a Rolleiflex camera. A measuring tape was spread over 

the reef, and the divers recorded the projected length of all the organisms and substrates 

underneath the line transect to a resolution of 1 cm. Photographs were taken at 1 m inter-

vals along the transect. This study was based on permanent transects photographed over 

a period of 20 months that yielded about 3000 photographs of corals belonging to Loya’s 



Proceedings 2021, 68, x FOR PEER REVIEW 6 of 15 
 

 

[11] list of approximately 100 species. However, the author noted that many cryptic spe-

cies do not show up in the photographs. 

Similar additional surveys were conducted following various disturbances that af-

fected the coral reefs of the gulf: the 1970 low tide [64], the repeated oil spills [65], the 

Pinatubo eruption of 1991 [66], and the fish farming episode of 1995–2008 [14]. 

Diver-based methods for classifying corals are almost impossible underwater, and 

require time-consuming expertise. Furthermore, coral pigmentation and morphology are 

plastic  changes in response to environmental forcing functions such as light and current, 

eliciting wide phenotypic variability [28,67]. Ever since the National Monitoring Program 

(http://www.iuieilat.ac.il/Research/NMPmeteodata.aspx) of the Eilat reefs was initiated 

(2003), annual surveys by divers have been conducted. 

The images are taken at a fixed area at six reef sites, namely the North Beach, the 

Dekel Beach, the Eilat Ashkelon Pipeline Co. Ltd. (EAPC), the coral reserve, the Interuni-

versity Institute for Marine Sciences in Eilat (IUI) marine laboratory, and Taba. Each site 

has  fixed camera brackets for five cameras, and each of these takes four images. In this 

way, 20 pictures are taken at each site, and 120 pictures are taken for quantitative analysis 

of the changes at the various sites. Monitoring is done once a year in early summer. Corals 

were identified as far as possible at the species level, and were also classified according to 

functional groups. The results are presented graphically following statistical processing. 

Due the disintegration of the rock to which the cameras were attached, some new sites 

had to be added [68]. 

Automated DL seeks to avoid these difficulties, profiting from the latest advances in 

computerized handling of large quantities of visual images [9]. Indeed, these novel devel-

opments have been increasingly applied to the survey and analysis of coral reefs in the 

studies listed in Supplementary Table S2. Since all previous surveys, as well as those of 

the current monitoring program of the Gulf of Eilat reefs, were based on the manual and 

visual analysis of large numbers of photographs, we present here a first example at using 

automated machine-based analysis for the red sea coral reef. 

6. Methods 

6.1. Work Process 

The photos and underwater videos of transects were acquired at the coral reef reserve 

in the Gulf of Eilat (29°30′ N, 34°55′ E). 

The methods used in the current study are: 

a. Natural sampling units by photographing the coral reef during daytime. 

b. Line transects for estimating the cover percentage at the four test sites in the Gulf of Eilat. 

c. Deep convolutional neural networks as an efficient classification for coral species us-

ing a supervised DL method called convolutional neural networks (CNNs). 

d. The Cochran-Mantel-Haenszel test was performed to compare the presence and pro-

portions of coral species abundance, as measured by different methods across multi-

ple sites. Post hoc analysis was performed with pairwise Fisher test with false dis-

covery rate (FDR), which is the expected proportion of type I errors. 

Species coverage percentage was estimated using a one-way ANOVA, followed by 

Tukey post hoc analysis. 

6.2. Study Sites 

Field work at four sites (Figure 1) was conducted from June 2017 till June 2018 in Eilat 

Coral Beach Nature Reserve. This site has a well-developed reef near the shore, as well as 

massive stony corals throughout the entire depth gradient down to 50 m. This is the most 

developed, complex, and diverse coral reef in the Gulf of Eilat. 
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Figure 1. Location of study areas (white bars) at the nature reserve (NR). Figure 1 was generated from Google Maps 

version number: 10.26.2, URL: https://goo.gl/maps/arRzA1ZmbZvjwVJp7. Map data © 2019 Mapa GISrael, ORION-

ME Imagery © 2019 , CNES/Airbus, Landsat/Copernicus, Maxar Technologies, U.S. Geological Survey. 

Two field data acquisition methods were used in this research: 

• “Natural sampling units” by photographing the coral reefs. 

• Line transects for estimating the cover percentage at the four sites in the Gulf of Eilat. 

The study sites were chosen on the basis of their accessibility and central location 

within the Eilat Coral Reserve. Furthermore, they are highly diverse, offering the oppor-

tunity to choose the most common species. The chosen sites allow studying the variability 

over space (between sites), and finally, examining the possible effects of human-mediated 

disturbances by comparing quantity and cover percentage at the most disturbed site of 

the three with reference sites at different depths. 

6.2.1. Photography 

More than a thousand still coral images were taken, and hours of underwater videos 

were recorded. The first step began by the underwater photographing of 400 still images, 

each covering about 1 m2 of the reef area. Subsequently, squares of 200 × 200 pixels con-

taining any of the 4 coral genera chosen for the initial stage of the study (Acropora, Favia, 

Stylophora, and Platygyra) were identified visually on the computer screen, labelled, and 

cut out of the original images. 

6.2.2. Equipment 

Photographing corals at the surveyed sites was done along line transects using an 

underwater Hero6 Black camera that offers video shooting at maximum resolution of 4K 

at 60 frames per second, and also supports 1080p FHD 1080P video playback, or 2.7K at 



Proceedings 2021, 68, x FOR PEER REVIEW 8 of 15 
 

 

120 frames per second. The camera has video stabilization capabilities, as well as the abil-

ity to download images from the camera to a computer or smartphone through a 5 GHz 

WiFi connection. It also has a GPS component, accelerometer, and gyroscope. 

6.2.3. Transects 

Each site and depth were marked by four line transects. At each site or depth, a 40 m 

line was laid parallel to the coastline from a randomly chosen point, and four sections 

were marked along the line at 10 m intervals, i.e., each section was 2.5 m. The four tran-

sects corresponded with 5, 10, 15, and 20 m depth. Every line transect produced hundreds 

of still photos and thousands of video frames. 

6.2.4. Areal Coverage 

In the present study, the coverage percentage of the corals serves as an indicator of 

the coral reef’s health.  Throughout the study, the relative coverage of eleven common spe-

cies was recorded. 

The results are divided into two sections: 

1. Coral species quantities and coverage percentage at each site (sites 1–4) by two 

methods (point estimated, Fiji ImageJ) (see Figure 2). 

2. DL coral classification data. 

 

Figure 2. (a) Coral species in the Gulf of Eilat; (b). Coral Point Count software for the annotation 

process; (c) photograph of an additional spot of the coral reef; and (d) annotation process. 

6.2.5. Sampling Frequency 

Field work was conducted from June 2017 till June 2018. 

Transects were photographed every month until June 2018. 

The images were analysed using DL on a computer with a Tesla K80 GPU accelerator. 

6.2.6. Cover Percentage 

Live coral cover was checked at the four test sites using the method of line transects. 

In each photo, the exact counts and cover percentage of the eleven coral species were 

noted for the number of these coral species per transect and for the percentage of coral 

coverage of each species. Examination of the photos focused on healthy corals. Count-
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based measurements followed the “center rule” scheme, as suggested by Zvuloni et al. 

[69]. 

In this work, only corals with centers lying within the sampling unit are counted, and 

all other corals are ignored. The advantage of this technique is that the size of a coral does 

not play any role in the sampling probability, making this method nonbiased in contrast 

to other, biased, methods and corrections reviewed by Zvuloni et al. [69]. 

Cover percentage was calculated using Microsoft Excel software and CPCe 4.1 soft-

ware in order to facilitate the logistics of the manual annotation process. Coral counting 

was done by Fiji ImageJ software. Statistical analysis was done using R statistics software. 

Sample images 

Video 

Sample video 

Video sequences were filmed from June 2017 till June 2018 at the three sites at differ-

ent depths (5 m, 10 m, 15 m, and 20 m). In order to get separate photos from the videos, 

QuickTime software was used. 

Use of video images 

Underwater videos of the coral reef species from the Gulf of Eilat were filmed in or-

der to produce a large dataset of images. Image blocks of 200 × 200 pixel-sized image 

frames were manually cut to comprise the chosen training dataset of 3850 sub images of 

some coral species, as shown in Figure 3. 

Common coral species 

Image preprocessing 

For preprocessing, the images were min-max normalized to be compatible with the 

network architecture (see Figure 4). After detecting and cropping the coral images, that 

are scaled to 200 × 200 pixels preprocessed and labelled. See Figure 5 for specific images 

for each coral species. 
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Figure 3. Samples of four of the coral species in the study. 

 

Figure 4. Preprocessing of an image. 

 

Figure 5. Examples of preprocessed coral images and their labels (from left to right): Acropora, Fa-

via, Platygyra, and Stylophora. 
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7. Results 

7.1. Obtained by DL 

High accuracy of 90% was obtained in a preliminary test by applying the DL method 

for classifying 400 images of four common coral species (see Supplementary Table S3). 

The method was proven by applying training results from three sites on a fourth 

external site, reaching accuracy of 80.13%. The fourth site with 2200 images was added 

classified for eleven coral classes. The results show accuracy of 80.13% for eleven coral 

species. The test data results show that the highest accuracy was observed for Stylophora 

(93.5%), Lobophyllia (92%) and Montipora (91.5%) other species like Platygyra (89.5%), 

Acropora (81%), Cyphastrea (80%), Porites (74%), Echinopora (73%), Pavona (70.5%), Goni-

astrea (69.5%) were observed in a lower accuracy and the lowest accuracy was found for 

Favia (67%) (see Supplementary Table S4). 

Using cross-validation results proves that the model can analyse new data from ad-

ditional sites not used in the training (see Supplementary Tables S6 and S7). 

7.2. Obtained by Traditional, non-DL Methods 

• There is no difference between the methods “Fiji ImageJ” and “Point estimated”, ap-

plied at each site (Cochran-Mantel-Haenszel test, X2(3) = 3.5084, p = 0. 3197) (see sup-

plementary statistical data Figure S6). 

• There is a significant difference among live coral cover and the number of coral col-

onies for the four sites, by any method (see supplementary statistical data Figure S8). 

• The difference in relative species’ coverage among the four sites was significant using 

both methods (see supplementary statistical data Figure S9). 

• The species differed significantly in their coverage percentage. The coverage percent-

age among species differed statistically (One-way ANOVA, F(3,12) = 11.9, p = 

0.000657) (see Supplementary Table S5). 

8. Discussion 

The proposed computerized classification method can be configured to different 

characteristics of the dataset (e.g., size, number of classes, class types, etc.). Several con-

volutional neural network (CNN) architectures, such as VGG-16 and ResNet-50, were 

compared by us, and transfer learning was used. We used ResNet-50 on a dataset contain-

ing eleven classes of coral species with a large number of images (5500), far more than the 

amount of images used in other studies. 

The classification of underwater coral images is challenging due to the large number 

of coral species, the great variance among images of the same coral, the lighting conditions, 

and the fact that several species tend to grow next to each other, leading to increasing 

overlapping among them. We proved that CNNs automatic classification of underwater 

coral images (see Supplementary Table S3) easily outperforms state-of-the-art painstaking 

manual surveys, of all CNNs, ResNet-50 was the best, due to its relative high speed, and 

level of accuracy (see Supplementary Table S4). 

It is noteworthy that trained technicians or specialists can obviously identify many 

more than 11 species, as well as delete erroneous data, their training may take years. Fur-

thermore, human workers could never generate the vast amount produced by automated 

methods. Following the case presented by us, it is obvious that machine based coral sur-

vey methods can be expanded to cover any coral species and non-species substrates. We 

demonstrate the validity of existing automated surveying methods in an environment 

where such methods were not yet tested. 

9. Transfer Learning 

Due to the challenging problems facing coral reefs exposed to climate change and eu-

trophication, only DL can provide the vast resources necessary to handle in real time, high 

resolution enormous amounts of monitoring data. That requires Transfer learning (TL), which 
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is an ML procedure that uses a model trained on one task to solve other tasks [70] and addi-

tional new problems [71]. That technique works on condition that if the model features learned 

from the first task are succulently generic to represent the features of the data seen during 

training.VGG-16 (very deep convolutional networks) is used in pre-trained models due to its 

high accuracy and advantages over ImageNet based classification. 

Lumini et al. [72] used deep learning methods based on CNN architectures for mon-

itoring underwater ecosystems. In order to do so they used 5 well-known datasets (3 of 

plankton and 2 coral datasets). They showed that their multiple models DenseNet suc-

ceeded the performance of the best single models. These authors used experimental data 

to examine the performance of both the single CNN and the ensemble of CNNs and 

showed that the best stand-alone model for most datasets is DenseNet. 

The DL neural network used here, i.e., VGG-16 (very deep convolutional networks), 

has been pre-trained and proven on millions of photos. VGG16 has high accuracy and 

resolves the dataset classification problem inherent in ImageNet. 

VGG16 is a 16 layer, 528 MB file size, classification model, based on the ImageNet 

dataset. It can classify 1000 most different image types such as plants, animals, buildings, 

and humans. 

The improved architecture we used is based on the previously trained VGG-16 net-

work, except for the final three layers. 

That architecture resulted in an accuracy of 90%, much better than that obtained by 

running our images on the original network without any modifications, which would 

have given very poor results. In addition, the major benefit of using the VGG-16 network 

was in the remarkably short time required to train the dense layer, which is a fully con-

nected layer in which each unit or neuron is connected to each neuron in the next layer. 

10. Conclusions 

10.1. The Innovations and Accomplishments of this Study 

• This is the first study of its type done in the Gulf of Eilat. 

• Will provide tools to follow the effect of climate change on the coral reefs of the Gulf 

of Eilat. 

• Will allow the establishment of a baseline prior to the opening of the Red-Dead-Canal; 

real-time monitoring of its effects on the structure and biodiversity of the gulf’s coral 

reefs. 

• Foundation benchmark for the benefit of future studies done in the region. 

• The refinement and development of the described DL method are applicable to reefs 

elsewhere. 

The accomplishments of our work are by using “big data” in order to address the 

urgent ecological need of classifying corals, specifically those of the reefs in the Gulf of 

Eilat. We demonstrated the adaptation and application of Deep Learning Neuronal Net-

works for classifying corals in the Gulf of Eilat reefs. We applied DL to solve the problem 

of automated documentation of the structure of the coral reef at four sites in the Gulf of 

Eilat. Our study includes just corals and yet achieved accuracy similar to those that also 

included strikingly different classes, such as sea urchins, seaweeds, sand and bare ground. 

10.2. Future Challenges in the Application of DL to the Study of Reefs 

• To develop the capability of DL for the study of time series in order to monitor and 

reveal temporal changes in the composition of reefs. 

• To extract size/age distribution frequencies within single species populations. 

• To document changes in live cover of corals in reefs. 
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