Ceratonia siliqua L. A Promising Functional Food for Chronic Diseases Related to Gastrointestinal System: Diabetes, and Lactose Intolerance †

Toma Nardjes Mouas 1,*, Zahia Kabouche 1, Amina Baadeche 2 and Randa Boufoula 2

1 Université frères Mentouri-Constantine 1, Laboratoire d’Obtention de Substances Thérapeutiques LOST, Campus Chasbet Ersas, 25000 Constantine, Algeria; Email
2 25000 Constantine, Algeria; Email
* Correspondence: mouas.toma.nardjes@umc.edu.dz

Abstract: The present study contributes to the promotion of a tree widely cultivated in the Mediterranean area, especially in our country Algeria; the carob tree “Ceratonia siliqua L.”; by a bibliographic mini review which lists the chemical, nutritional, biochemical, biological, and biotechnological properties of carob and its by-products expressed by the evaluation of its activities: antioxidant, anticancer, anti-hyperlipidemic, anti-diabetic, anti-reflux, anti-diarrheal, antibacterial, anti-inflammatory, antiulcer and enzymatic, noted in the literature for few years. The presence of the main primary and secondary metabolites: polyphenols, fibers and sugars; give these products very interesting properties and benefits for human health by making it dietetic product and a raw material of choice in food, pharmaceutical and biotechnology industries, in this perspective we developed in our laboratory a Ceratonia siliqua L. fruit aqueous extract based vegetal milk as a functional food for chronic diseases related to digestive disorder: diabetes, and lactose intolerance.

Keywords: Mediterranean local products; Ceratonia siliqua L.; carob; functional food; nutraceuticals

1. Introduction

Ceratonia siliqua L. belongs to legumes’ family, it is widely cultivated in Mediterranean region, where it is considered as a natural component of biodiversity and a famous local product, used by local population since ancient times for alimentation as well as traditional remedy. According to FAOSTAT 2019 statistics it is cultivated on 80,000 hectares for a world production of 160,000 t/year, with varying production yields depending on cultivars, soils, climates and agri-practices. It is also beneficial to the local agricultural economy since it is a drought- and temperature-tolerant plant [1,2].

Last decades, scientific researches focus on tree parts application especially biological and biotechnological ones [3,11], as its bioactive components could be very interesting for functional foods industry, food supplements, nutraceuticals..., mostly because it is usually conceded as by-products.

In this context, the present mini review aims to promote renewable local bioresources for an agriculture based on responsible and sustainable Eco-economy.

2. Experiments

Intensive and rigorous researches using several national and international references (articles, books, reviews in Electronic databases: MDPI, Science Direct, Springer, ACS, RS, Pub Med, Pub Chem., Google Scholar...) were performed since 1981 until our days, to
study evolution of scientific research on *Ceratonia siliqua* L. in time, and how it performs in regard of varying fields: ethnobotany, ethnopharmacology, Chemistry, Nutrition, Biological and Biotechnological applications in order to extract maximum informations concerning investigated plant.

3. Results and Discussion

According to our review, scientific researches are generally increasing for example we identified 872 Articles for 2000 and 620 Articles for 2010, highlighting by the way growing interest, currency and relevance of studied plant. Obtained results, lead to enumerate achievements and lacks which could be interesting to investigate in the future.

3.1. Origin and Geographic Distribution

De Candolle (1883) and Vavilov (1951) reported carob tree origin to Turkey and Syria region, while Schweinfurth (1894) reported it to Yemen region. Nowadays it is extended around Mediterranean region from Spain and Morocco to Turkey [12,13], and is introduced in many other countries: USA, Australia, Argentina, India... [14].

It is grow in holm oak stand in association with *Olea europea et Pistacia lentiscus* [15], and is resistent to salent poor soils, and sub-arid climate [16,19], which make it a natural green fence against soils degradation, erosion and desertification [18,20].

3.2. Current Uses

3.2.1. Traditional Use

Several ethnopharmalogical surveys reported carob tree among most cited plants by herbalist and local informant for nutritional value and treating gastro-intestinal system diseases [21,24].

3.2.2. Food Industry

Carob pod pulp is used as cattle feed in addition to barley floor [25,26].

Carob flour obtained by grinding terrified dried pods after shelled, is widely used in dietary food industry due to its high content in sugars, free gluten and phenols which is recommended for eucolic persons [17,27–28], it is also used in preparation of milk flour [29–31], drinks, citric acid, jams, sirup, honey [13,15,32] as substitute of cacao in chocolate and biscuits [29].

Seeds tires is used as substitute of pectin, gelatin, stabilizer, fixer in several products such as cheese, sauces, mayonnaise; it is also used as thickening E410 in candy production [33].

3.2.3. Cosmetology

Due to its capacity to form viscous solutions at low concentrations, its thinking, emulsifier and stabilizing proprieties [14,34,35]; it is used as natural adjuvant in soaps, creams, toothpaste... [36].

3.3. Chemical Composition

3.3.1. Primary Metabolits

- **Carob tires**

 Major constituent of carob tires is a galactomannane (80–85%), a polysaccharide present in carob seeds [37], in addition to 13% of lipids; 4% of proteines, 1–4% of celluloses and lignin and 1% of ashes and water content [38].

- **Pod pulp**

 Pod pulp is rich in simple hydrocarbs (saccharose, fructose, glucose) and fibers [39,40] and its content depends on culiyvars, soils, seasons and climates. [14,41–44]. Algerian cultivars reports 37.5 to 45.3% total sugars content, and according to Avallone (1997)
the average composition is 27–40% of Saccharose, 3–5% of Glucose, 3–8% of Fructose, 2–6% of Protéines, 0.4–0.6% of Lipids, 2–3% of ashes and 27–50% of Fibers.

3.3.2. Secondary Metabolites

- **Phenols**

 Carob is an interesting phenols source (16–20%) [45,46], with a high molecular weight even in comparison with other plants [47], responsible of its antioxidant activity [48,49].

 According to Owen (2003), flavones content in carob is about 0.132 g/kg [42], Würsch (1984) and Saura-Calixto (1988) reported a tannin content of 16–20% on dry weight in pods [47,50].

 Kamal K. et al. (2013), reported that coumarins content in carob flour is about 4.49 ppm while lignins are about 33.06 ppm [51].

3.4. Nutritional Value

 Carob fruit is relatively caloric since 100 g of caroub flour give about 222 kcal/933 kJ [51].

3.5. Biological Activities

3.5.1. Antioxidant Activity

 Several phytochemical studies were realized using DPPH and ABTS tests showing an important antioxidant activity [17,49,52–53].

3.5.2. Anticancer Activity

 Polyphenols and fibers are oftenly reported as cancer inhibitors especially colorectal one which is negatively correlated to a rich fiber diet [54]. Consequently, carob fibers are potent agents in cancers prevention [55].

3.5.3. Antihyperlipidic Activity

 According to Valero-Munoz (2014–2017) studies, carob fibers are active in the treatment of blood lipid troubles due to the high quantity of insoluble fibers: cellulose and hemicelluloses and/or polyphenols in carob fibers [57].

 Carob gum as soluble fiber has the potent to lower plasmatic blood cholesterol value [57]. Moreover, Carob fibers hypocholesterol agent derivative was patented [58].

3.5.4. Antidiabetic Activity

 In vitro studies reported Carob gum as a blood glicemia reducer [59].

3.5.5. Antireflux Activity

 Prior studies, reported Carob gum as infants reflux reducer and its symptoms [60–62].

3.5.6. Antidiarrheal and Antibacterial Activity

 Kivçak, et al. (2002) found positive results for Ceratonia siliqua L. leaves inhibitory effect on different Escherichia coli strains, Staphylococcus aureus and Staphylococcus epidermidis, thus, glyconutriments in Carob act as prébiotiques, which make it a diarrhea natural treatment [49,63].

5. Conclusions

 The present bibliographic mini review on carob tree and its organic derivatives (pods, pulp, seeds, flowers, leaves), exhibits its richness in several primary (fibers, hydrocarbs) and secondary metabolites (phenols, Gallic acids, catechins, quercetin, tannins...) which content and profile depend on plant studied part, soil, climate, cultivar, extraction
and characterization methods. Besides, an important antioxidant activity, a high nutritional value and dietary profile make its plant parts derivatives very interesting functional foods, dietary supplements, adjuvant in pharmaceutics, nutraceutical, to treat several chronically diseases related to nutrition such as cancer, diabetes, ulcer, gluten intolerance.

In this regard, a range of dietary products was developed in our laboratory: free gluten floor, molasses, vegetable milk, tires, to promote local organic products for a sustainable eco-responsible economy.

Author Contributions: M.T.N. conceived, designed, analyzed the data and wrote the paper; B.R. and B.A. performed the review; Z.K. scientific assistance.

Acknowledgments: Authors would like to thank Algerian Ministry of Higher Education and Scientific Research DGJES, and the Algerian Directorate General for Scientific Research and Technological Development DGRSDT for financial fund.

Institutional Review Board Statement:

Data Availability Statement:

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

