. B
B SO
T B

1st International Conferenee-on o
2021 Micromachinesand Appllcatlons .

. @ .\,\/
o ® N\

By
.l

<)
., o

(",

. o o &5

A deep learnmg-based appréach to uncertalntym ’_ micr;)machines -
quantification for polysilicon MEMS e ml\D\Py

José Pablo Quesada-Molina'?*, Stefano Mariani!

1 Department of Civil and Environmental Engineering, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133, Milano (Italy)

2Department of Mechanical Engineering, University of Costa Rica, San Pedro
Montes de Oca, San José (Costa Rica)

* Corresponding author: josepablo.quesada@mail.polimi.it

J(,géio POLITECNICO #: 4 UNIVERSIDAD DE
S

/ MILANO 1863 COSTARICA




SVE .
stract Statistical Volume 2. Overall properties
Element are realization-

dependent
Length scale separation

principle for RVE does not
hold (L/$; # )

1. Typical structure of
an inertial MEMS

Spring  Fixgffl  Moving elecirode
\ p'{ nt with mass Fixed electrodes

Spring

Fixed point
T

— _Lfl

’;' = =7
Fixed electrodes d :
" ff):;lm% Cl=C2 1 Vo Voigt
. 151 -
! — — -
Proof ma —
t OO Mass * Dcf 150 .
y i Cl<C2 o 149 4 I
e ]
X " 4 I — e 148 - i
. . 5= 147 == 7L naeem e Reuss
Fixed point \ Fixed point ChQ 146 —
Fixed electrodes ‘ .
furx 145 n L] LI Ll I L) L] Ll I Ll 1 Ll l 1 ! I | I ! I
2-axis acceleration sensor 10 20 30 40 50 60
Reference [1] L/ S g Reference [2]
4. Tdea: Traini | 3. Scattering in the overall
. ea:. lralining a neura .
& properties

network to catch this Dependent of the micromechanical
variation automatically ! features of the polycrystal: topology of
grain boundary and lattice orientations




The path towards miniaturization for micro electro-mechanical systems (MEMS) has
recently increased the effects of stochastic variability at the (sub)micron scale on the
overall performance of the devices. We recently proposed and designed an on-chip
testing device to characterize two sources of variability that majorly affect the
scattering in the response to the external actions of inertial (statically determinate)
micromachines: the morphology of the polysilicon film constituting the movable
parts of the device; and the environment-affected overetch linked to the
microfabrication process. A fully stochastic model of the entire device has been set to
account for these two sources on the measurable response of the devices, e.g. in terms
of the relevant C-V curves up to pull-in. A complexity in the mentioned model is
represented by the need to assess the stochastic (local) stiffness of polysilicon,
depending on its unknown (local) microstructure. In this work, we discuss a deep
learning approach to the micromechanical characterization of polysilicon films, based
on artificial neural networks (NNs). Such NNs extract relevant features of the
polysilicon morphology from SEM-like Voronoi tessellation-based digital
microstructures. The NN-based model or surrogate is shown to correctly catch size
effects at a varying ratio between the characteristic size of the structural components
of the device, and the morphology-induced length scale of the aggregate of silicon
grains. This property of the model looks indeed necessary, to prove the
generalization capability of the learning process, and to next feed Monte Carlo
simulations resting on the model of the entire device.

Keywords: Polysilicon MEMS; stochastic variability; homogenization; deep learning;
NN-based surrogate.
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inertial MEMS

Polysilicon film

b Micro-scale (sub-micron)

' Meso-scale (micron)

} Macro-scale (mm)

al is to predict the maximum scattering that can be expected in

(in the context of homogenization) exclusively due to intrinsic
esent in the polycrystalline material constituting these devices.

1. Decoupling between

macro- and meso-scale ?
Allowed by small inertia of the
sensor. Interaction between
different scales (in case of
dynamics) is driven by the by
the mass because of inertial
forces.

2. Decoupling between

meso- and micro-scale?

Not possible! For a reliability
assessment, particular focus has
to be given to the slender parts
in these inertial systems (most
prone to fail), whose response
strongly depends in the
underlaying microstructure.




1.

Propose an alternative approach to standard homogenization techniques.
Generate microstructure-property mappings to characterize the
mechanical reliability of inertial MEMS whose movable structures are
made of polysilicon films.

Train and test a NN-based surrogate that combines the sequential use of a
CNN and a MLP. Input : 2D statistically representative images. As labels:
theoretical values of the homogenized property (in-plane apparent Young's
modulus, E ) obtained from standard FE.

Numerical

MchOdOlogy Homogenization

via FF
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ilicon Film Morphology

Summarizing:

ThELMA v' Suspended structures

. 1. One axis of elastic
Surface Micromachining v° Compliant components

symmetry aliened with
‘7 STMicroelectronics e}{)itaxial }g;rovgéth
direction i.e. x3.
2. Random orientation of
other two elastic
R symmetry directions in
X2 the x1- x2 plane.

1 Lattice Atoms

»
»
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(preferential direction ) Taking a slice of the film

(morphology perpendicular to
growth direction)




4. Directional variation
of the in-plane Young's
modulus

onocrystalline Silicon

1. Single-crystalline silicon

) ) : In <100 > E=130 GPa
Diamond cubic lattice In <110 > E= 169 GPa

(Anisotropic elasticity)

By introducing the 90’
Stiffness coefficient appropriate %‘3 60"
matrix depends on the tranSformation Of the ‘q—; ~Reference [6]
crystal orientation stiffness matrix (tensor =
transformation law) é
Reference [5] -
=
X3 g
2. Stiffness Matrix of Silicon [001] >

( 165.64 63.94 63.94 0 0 0 \ Young's modulus (GPa)
63.94 165.64 63.94 0 0 0 .
63.94 6394 16564 0 0 0 Elastic modulus of
0 0 0 7951 0 0 monocrystalline Si
0 0 0 0 7951 0 under in-plane rotations
\ 0o 0 0 0 0 7951 ranging 0 < 6 < 90°

< 100 > aligned with (x; X, X3)
Reported in [GPa]

[100]




Real Microstructure Digital Microstructure
(Poly -Si Thin Film) (Voronoi Tessellation)
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stochastic effects of:
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-: Input Data Generation (2)

( Infinite Voronoi carpet ) L=5um, 3p_m} L
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Reference [2] (Assessment of the
generalization of the model)
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Validation Sets .

« Pixels take values [0, 255] encoding the in-plane
lattice orientation 0 (related to the directional
variation of the in-plane Young's modulus)
* Ground-truth data (labels) for SVEs come from
standard FE simulations




gy: Input Data Pre-Processing

1. Median Filter to reduce artifacts (pixels with incorrect values)

2. Resolution Adjustment: reduction of image size (pixels) by a factor of 16
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For example, for the ResNet18-based model:

Using initial resolution: ~ 72 s/epoch, Training time ~ 2.5 hours, Max. B5=10
Using final resolution: ~ 4 s/epoch, Training time ~ 8 min, Max. B5=300

ICMA

Speed up the training without sacrificing model accuracy!
(test error was checked)

2021




-y: Data Splitting Training

2889
SVEs
Il > pmx2um
2 mez Hm Dataset Validation
4053
M mx3um Ve 989 SVEs
Sumxdum

1. Training and validation of the NN-based
surrogate is performed using only 2umx2um
SVE samples!

2. At a later stage, generalization of the model
is assessed by evaluating the predictions over
3umx3um and 5Sumx5um SVE samples!




odel Implementation (1)

¢ Neural Network Architecture: Symbolic description of the models

High-level features are then
employed as input to a MLP

Input

Microstructure OUtpUt

Representation Overall in-

(Image of SVE) plane Elastic
Modulus

ResNetl8 ~
or FE
DenseNetl121

Features extracted
in a hierarchical

manner through FC (100 nodes)  FC (Output)
the use of a CNN ¥V—/ w

Feature Learning Block

architecture Regression Block

Two different CNN
architectures are compared




Model Implementation (2)

e CNN Architecture: Residual Networks

Residual learning Family of ResNet Architectures
framework based m layer name | output size 18-layer | 34-layer | 50-layer | 101-layer | 152-layer
k. . convl | 112x112 7x7, 64, stride 2
skip-connections 353 max pool, sride 2
[ 1x1,64 ] [ 1x1,64 [ 1x1,64
2 5656 ’ ' ’
comvex . [ gxgz } x2 [ gxg'z }xs 3x3,64 | x3 3x3,64 -‘ x3 3x3, 64 -‘ x3
X = o | 1x1,256 | | 1x1,256 | | 1x1,256 |
¥ - e = s - s
- ; - ; 1x1,128 1x1, 128 1x1,128
weight layer conv3x | 28x28 i:i gg X2 ;:; :ig x4 | | 3x3,128 [x4 3x3,128 | x4 3x3,128 | x8
7 | L 27 20 L =7 0 | 1x1,512 | | 1x1,512 | | 1x1,512 |
X relu - ) - ) - -
( ) v x 33, 256 33, 256 1x1,256 1x1,256 1x1,256
ioht | convd_x 14x 14 1%3. 256 x2 153 256 ®6 3x3,256 | =<6 3x3,256 | %23 3x3,256 | %36
weight layer . . [ 3%3,256 | [ 3%3,256 |
gntlay identity [ 1x1,1024: _1x1,1024 | _1x1,1024 |
- ; - ; 1x1,512 1x1,512 1x1,512
convSx | Tx7 ;ﬁgg x2 ;i;g:g x3 || 3x3,512 |x3 || 3x3,512 [x3 3x3,512 | x3
JT(X)'FX L 2T L T | 1x1,2048 | | 11,2048 | | 1x1,2048 |
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° | 36x107 | 3.8x10° | 7.6x10° 11.3x10°

Reference [7]
Reference [7]

‘H (}c) Desired underlying mapping to be fit

F (X) = H(X) — X Explicit fitting of a residual mapping




Model Implementation (3)

) CNN A h. . Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264
rC lteCture' Convolution 112 x 112 7 x T conv, stride 2
Densel ‘ Onnected Pooling 56 x 56 3 x 3 max pool, stride 2
. Dense Block 56 % 56 1 x 1 conv %6 1 x 1 conv %6 1 x 1 conv <6 1 x 1 conv %6
OnVO utlona (1) | 3 x3conv | | 3 x3conv | | 3% 3conv | | 3% 3conv |
Transition Layer 56 x 56 1 % 1 conv
Networks (1) 28 x 28 2 x 2 average pool, stride 2
Dense Block 28 x 98 'lxlconv'xlz 'lxlconv'xu 'lxlconv'xlz 'lxlcom"xl2
oot (2) L 3 x3conv | | 3 x3conv | L 3 x3conv | L 3 x 3 conv |

Transition Layer 28 x 28 I x 1conv
(2) 14 x 14 2 x 2 average pool, stride 2
Dense Block [ 1x1conv | [ 1% 1conv | [1x1conv | [ 1x1conv ]
14 x 14 24 32 48 64
3) X _3><3e:0nv_>< _3><3ccmv_>< _3><3con\r_>< _3><3c0r1v_X
Transition Layer 14 x 14 1 x 1 conv
(3) Tx7 2 x 2 average pool, stride 2
Dense Block [ 1x1conv | [ 1 x1conv | [1x1conv | [ 1x1conv ]
Tx7 16 32 32 48
4) X _3><3e:0nv_>< _3><3c:0nv_>< _3><3;c01w_>< _3x3conv_x
Classification 1x1 7 x 7 global average pool

1000D fully-connected, softmax

Reference [8]

Reference [8]

Family of DenseNet Architectures

Direct connections from any

layer to all subsequent layers! Each layer has access to all
the preceding feature-maps,

xy = H ;3([}{[]j X1yewns Xg_l}) encouraging feature reuse
(compactness, redundancy)




Loss (MSE)[GPa2]

Training Evolution
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For an ideally trained
model, data should
map the identity
function, with all the
dots aligned along
the 45° diagonal.

Network has learnt
to emulate intrinsic
features of the
polysilicon
microstructure.

Consistent
microstructure-

property mappings:
predictions fall within
the theoretical limits
given by the ground-
truth data.




Loss (MSE)[GPa?]

Training Evolution
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eNet-based regression model

Parity Plot (DenseNet121)

Training and Validation Sets (2umx2um SVEs)

170 ; r
@ Jraining Set RZ=0.987 MSE= 037 -
165 £ SD=5.608GPa(5.404GPa) APE=3.70% == :== ;e fi=:=
P Validation Set R? =0.961 MSE= 1.11
SD:5.424GPa(5.342GPa) APE=1.53% i
1604 ¢ e L
I
155 A I
I
150 ~ I
I
145 Il
I
140 i
135 +—. ._._._._._._._._._._._._.! —
130 L1 ; : : . . A
130 135 140 145 150 155 160 165 170
Ground Truth Value, E[GPa]
Parity Plot (DenseNet121)
Test Set (5pmx5um SVES)
170
Test Set R? =0.868 MSE= 0.78
SD=2.550GPa(2.436GPa) APE=4.67%
165 -
160 |
155 A
150 A
145 |
140 |
135 |
130 ' ' ' ' ' ' '
130 135 140 145 150 155 160 165 170

Ground Truth Value, E[GPa]

 Again  consistent
microstructure-

property mappings
are obtained.

* Although linked to

a lower total
number of
parameters, this
model has not
displayed significant
performance

improvements, when
compared to the

ResNet18-based.




* The models were able to reconstruct the one-to-one correspondence between microstructural
arrangements of a polysilicon aggregate and its apparent overall Young’s modulus value.

» Statistical characterization of overall Young’s modulus was possible also for SVEs featuring
different sizes (L/S; ratios) with respect to the ones employed during the training.

« Although the DenseNet121-based model requires fewer parameters, the computational time
was higher than the ResNet18-based model. Moreover, DenseNet121-based model allowed the
use of only a fraction of the mini batch size when compared to the ResNet18-based model.

 As far as the generalization capabilities are concerned, in general terms a better performance
has been observed adopting the ResNet18-based architecture.

Improve representativeness of test sets e.g. increase their size.

Improve pixel color encoding: account for the fact that directional variation of the in-plane
Young's modulus does not follow a linear relationship with the in-plane lattice orientation.
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the postgraduate studies abroad.
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