E . -
,‘, o P

1st International Conference.on - N\
2021 Mlcromachlnesand pphcatmns

. «.\*t“‘ ¢ O

V“ .JJU

/P A £a "UMID

Enhancing Lift Force at Low Reynold’s Numbers with
Photophoretic Levitation of Porous 3D Structures

F
Thomas Celenza'’
Mohsen Azadi', Zhipeng Lu2, Matthew F. Campbell', Igor Bargatin?
1 Department of Mechanical Engineering and Applied Mechanics, University

BARGATIN
GROUP

of Pennsylvania

2 Department of Chemistry, University of Pennsylvania
Corresponding author: bargatin@seas.upenn.edu

GEs v
SINE MORIBUS



Enhancing Lift Force at Low Reynold’s Numbers with Photophoretic Levitation of Porous 3D Structures
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Abstract

It is well documented that the lift force of hovering micro aerial vehicles can be enhanced by increasing their air-flow
velocities. This is commonly accomplished using nozzles and other flow-manipulating geometries with Reynolds numbers above the
order of 100s. However, the effect of geometries, like a nozzle, are not well characterized for below Reynolds numbers within the
Stoke’s regime. Fig. 2 shows near-zero enhancement of lift for nozzles within this regime. In general, controlled flight in low-
Reynolds number conditions using conventional propulsion methods such as propellers is difficult. Instead, levitation at ultra-low
Reynolds number conditions has been accomplished through other means, including photophoretically as demonstrated recently by
Cortes et al. and Azadi et al. These works levitated planar materials without macroscale geometric enhancements and relied strictly
on the lift force created through a temperature or accommodation coefficient difference across the planar structure. In the current
work, we numerically explored the feasibility of multiscale structures operating at low-to-moderate Reynolds numbers that pair

microscale photophoretic gas pumping with macroscale jet-inducing nozzles.

We used ANSYS Fluent to simulate the lift forces in centimeter-scale porous membrane discs (no macroscale
enhancements) and in conical nozzles created from porous membranes. Our results reveal a lift enhancements due to porous
nozzle geometries occur within Stoke’s Reynolds number regime. In addition, we developed a semi-analytical flow model and found
good agreement with the simulations. We are currently fabricating mylar structures analogous to the simulation geometries, laser
machined to create porosity and adhered to lightweight frames to maintain shape. The multiscale structures we create will be of

critical importance for exploring low-pressure environments such as Earth’s mesosphere and the Martian atmosphere.

Benedict MAV 2015, Seddon 2011, Cortes Adv. Mater. 2020, Azadi Sci. Adv. 2021



Photophoretic levitation - Nanocardboard
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a) Naked-eye view of nanocardboard
b) Zoomed-in view of channels

c) Levitation mechanism

d) Experimental levitation

e) ldeal pressure range for levitation

Cortes Adv. Mater. 2020, Lin Nat. Comm. 2018
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2D material with microscale thickness,
macroscale area
Increased plate stiffness and ultralight weight
(4 orders of magnitude stiffer, 1 g/m?)
 Difficult to fold, bend, adhere
Achieve levitation through one version of
photophoretic forces
« Light heats up a layer of carbon
nanotubes
« Air flows through channels along
temperature gradient



Photophoretic levitation - Mylar

« Light heats up one side coated with carbon nanotubes creating a temperature gradient
* Induces gas flow and increases speed of reflected gas molecules
» Creates a lift force to create levitation at low pressures

SUPPLEMENTARY MOVIE 4

Controlled flight of two disks over large light trap
30 Pa environment

Bargatin Group — University of Pennsylvania

Azadi Sci. Adv. 2021



« Start with simple disk simulations and move to more complex geometries
MethOdOIOgy « Simulates 3D version of the planar photophoretic levitation
« Carbon nanotube layer is on the inside
« Approximations of flow-through effect
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Axisymmetric ANSYS Fluent Simulations

Streamlines of rocket-shape inside an air box
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* Inletis inner side, outlet is outer side - highlight
» Creates air flow into microflyers

« Vary geometry and size with same setup

 Lift force taken as reaction force along walls



Disk and nozzle results

Disk & nozzle lift force comparisons
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Rocket shape results
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Porous cone results
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Lift to Weight Ratio

Earth, sea level conditions L|ft'tO-We|ght rathS
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What's next?

Lift-to-weight ratios show promise for Martian flight

Pressure range for flight increased with 3D geometries

New simulations will include spheres

Applications will include atmospheric sensing in the mesosphere and on Mars

Experimental work has begun on constructing the geometries
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Conclusion

Photophoretic levitation of planar structures achieved by Bargatin group
COVID-19 halted experimental work
Simulations meant to research expanding to 3D geometries for increased pressure range of levitation

Next: fabrication of 3D geometries with experimental levitation tests

Future goal: Martian and mesosphere exploration
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