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Controlled Light-Driven Levitation of Macroscopic Plates

We report light-driven levitation of 0.5-um thick mylar samples that have been modified
by depositing a 300-nm-thick layer of carbon nanotubes (CNTs) on a single side. The CNT layer
serves three key purposes: 1) It acts as a lightweight light absorber, absorbing ~ 90% of the
incident light and elevating the temperature of the sample. 2) It increases the structural rigidity of
the mylar film, allowing cm-scale discs with submicron thicknesses to hold their shape. 3) It
creates a structured porous surface that traps impinging gas molecules, which results in an
accommodation coefficient difference between the top and bottom surfaces for gas-surface
interactions. Air molecules that rebound from the CNT-coated side have on average higher
velocities than those departing from the opposing uncoated mylar surface. We show that the net
force thus created can be used to levitate the mylar films. Moreover, we will demonstrate our
ability to manipulate a light field in order to control the flight of levitating samples for extended
periods of time.
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A new way to fly! @ggmm

Micromachines Conference April 2021

Controlled flight of a 1cm disc
over a large light trap
60 Pa environment

Bargatin Group — University of Pennsylvania
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Inaccessible regions of the Earth’s atmosphere
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https://newbreweress.weebly.com/stratospheric-ozone.html

Inaccessible regions of the Earth’s atmosphere

700 km
|

Satellite
* No flight mechanisms available | é";’é‘

Exosphere "i S5l
|
|

. ! Aurora
* |mp0rta nt for Weather, sensing, Thermosphere || 1500 °c K |
surveillance, etc. S— ~

i -85 °C
_ Mesosphere v Meteors
0°C

@ Radiosonde
1] ‘_..:'..!“‘._.:..U TR .’.‘a-,-;_. - s :{" Il..
OO A {9 B ph o NP )
) . S 2 NS

P M 2 A Y S S S T O e Lo Liaitl ] '
-
A DUAS

- et A e e X -
B0 °C v N

Low ambient pressure for aircraftand =~ =
balloons, high pressures for satellites " | Troposphere |y |/ . o
causing high drag force. e e e T

https://newbreweress.weeblv.com/stratospheric-ozone.hPmI



https://newbreweress.weebly.com/stratospheric-ozone.html
https://newbreweress.weebly.com/stratospheric-ozone.html

Photophoresis: light-driven flow === Photophoretic force: Force due to light-driven flow

Photophoresis on microscopic particles:
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We eliminated the need for internal temperature gradient
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Assume we have a uniformly heated sample: thin disk

Consider a very thin plate in a low-pressure gas where intermolecular collisions don’t happen.

Net Force
a <a; Tys = Tss on the Plate

Thermal accommodation coeff.: & S Aa~Force
Indicator of thermal interaction between gas
molecules and surface

Incoming radiation




Slip flow regime; physics:

Knudsen layer
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Cheap, fast, easy to make samples: Ve >V,

Smooth surface
‘ ’p"«:{‘e".’ MR INYIFA] Structured surface

What we MUST have: Aa between the two sides Fiife ﬁ

I'=Tw how much energy the molecule
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Easy ways to change «: Vg >V,

- Change the interaction time between gas molecule and surface

- Increase number of collisions each molecule has with surface
before returning to ambient

Creating a trap
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Cheap, fast, easy to make samples:

Water based CNT solution ‘

0.5 um Mylar

4” Si wafer
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Hot plate at 50C
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Creating a trap

Sample Fabrication BARGATIA

4“ wafer after F o
evaporation of y
the water:

Bonus point:

e CNT layer absorbs light
 CNT layer increases structural rigidity

Areal density: 1 g /m?



Sample Fabrication BARGATIN
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Creating a light trap and the experimental setup:

8 LED setup for a light ring — up to 10 suns in intensity of the center of the ring.

Transparent metallic mesh (74%) as launch pad

Clear acrylic chamber for video capturing
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We also tested scenarios that the theory says they shouldn’t work:

Levitation ]
No levitation — low force 0 0

No levitation — thermal deformation ~
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Pe.nn. Experimental results BARGATIN
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We also tested scenarios that the theory says they shouldn’t work:

4 mm
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Earth’s upper atmosphere: Optimized values of Aa=0.5 and emissivity= 0.5 under natural sunlight
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Cheap and fast Sample
fabrication, with
structured surface
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Optimized high altitude
levitation with payload

Controlled flight at
low pressures
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