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Abstract

Magnetic microrobots with versatile mechanical motion will enable many ex-
and in-vivo applications. Unfortunately, monolithic integration of multiple
functions in a streamlined microrobotic body is still challenging due to the
compromise between fabrication throughput, device footprints, and material
choices. In this talk, I will present a unified framework architecture for
microrobotic functionalization to enable magnetically steered locomotion,
chemical sensing and in-vivo tracking. This has been achieved through
stratifying stimuli-responsive nanoparticles in a hydrogel micro-disk. We
uncovered the key mechanism of leveraging spatially alternating magnetic
energy potential to control a Euler’s disk-like microrobot to locomote swiftly
on its sidewall. The results suggest great potential for microrobots to locomote
while cooperating a wide range of functions, tailorable for universal
application scenarios.

Keywords: Magnetic micromachine; stratified disk; dynamic bioanalysis;
rotating magnetic field; microrobot functionalization




Introduction: Micromachines for In-vivo Applications

Microrobots are envisioned to perform site-selective tasks in-vivo
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Introduction: Various Microrobot Body Designs
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Concept of this Work: Streamlined Stratified Disk Body
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Approach: Inspired by Euler’disk-like Gyration

Euler’s disk-like gyration Euler’disk gyrating on a surface

Video source: http://www.teachersource.com

Substrate Trajectory

* Inspiration: rapid gyration along its low-friction sidewall
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Our Approach: Magnetic Actuation of the Micro-disk

Euler’s disk-like gyration

Fluid

Substrate Trajectory

Magnetic stirrer as power source




Results: Mapping of the Magnetic Field Distribution above
the Stirrer
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Results: Analysis of the Forces Exerted on the Disk
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Results: Magnetic Actuation at Low Rotating Speeds
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Unpublished data




Results: Orbital Revolution of Disks with Varied Modes
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Results: Mechanism of the Wobbling Revolution Stance
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* Ordered magnetic nanoparticles (easy axis) in the disk can enhance the
magnetic field-structure interactions

* Addition torque is induced to couple the structure orientation wit

magnetic field
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Results: Mechanism of the Wobbling Revolution Stance
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Scalable Function — (I): Disk microrobot scalable for
magneto- and sensing- motilities
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Scalable Function — (I): Disk microrobot scalable for
magneto- and sensing- motilities
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* Cooperation of magneto-motility and proton sensing ability
* Enhanced reaction rates lead to reduced response time
* Reusable and reversible proton-activated fluorescence response
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Scalable Function — (II): Ratiometric protochromic microrobots
by Embedding Upconversion Nanoparticles
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Scalable Function — (III): Deep-tissue imaging of single
microrobot by NIR-II nanoparticles
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Conclusions

* We have proposed a stratified disk design of microrobots using a class of
microfabricated PEGDA hydrogel polymers.

* This scalable architecture can monolithically integrate a broad spectrum of
microrobotic functions with enhanced robotic maneuverability.

* The key to steering the disk structure lies in breaking the symmetry in the
magnetic field control and magnetic composition.

* The disk microrobot can be rendered with high motility, manifesting itself as
fast locomotion aslant in relative to the surface along the structural sidewall at
a speed up to around 36 mm/s, about 60 body length (BL)/s.

* The cooperation of magneto-motility and chemical sensing functions of the
microrobots were found to significantly reduce the response time. The use of
UCNPs unlocked a ratio-metric protochromic microrobot by NIR excitation,
and the use of NIR-II nanocrystals allows deep-tissue imaging of single
microrobots.




Acknowledgments

&, ARC Research Hub - IDEAL

Transforming Diagnostics Technologies

Australian Government

National Health and
Medical Research Council




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

