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Bionics —restoring human functionality

* Prosthetics
e Spinal cord repair
* Neural bridge
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Playing piano with a mind-controlled robotic arm

Johnny will tell you the movement is slow = neural interface would allow more natural movements



https://www.youtube.com/watch?v=DP677lA_DEA

Neural Interfaces face many challenges

Long-term in-vivo results in:

* Device failure (50% device failure)
* Tissue damage

* Loss of functionality/performance

e Si arrays (Michigan and Utah) ~ 1-6 months

* Polymer arrays ~ 6-12 months

* Novel coatings ~ 4 years MAX

Severe tissue death with W probes

* A new strategy is clearly needed!
* Cubic SiC - excellent neuro and hemacompatibility

* In-vitro and In-vivo (1 month) data = solution?

In-vivo challenge — suitable materials for 25+ year operation in the human body




Monolithic ‘All-SIiC’ INI a possible solution

All-SiC neural probe to be
packaged with an Omnetics 18
pin nanoconnector to a ZIF
- connector for animal testing

http://www.jhuapl.edu/newscenter/pressreleases/2016/160112.asp

Osseo-integrated — lets integrate with a robust, long-term neural interface!



http://www.jhuapl.edu/newscenter/pressreleases/2016/160112.asp

In-vitro performance
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Only 3C-SiC passed all ISO 10993 tests (chem stability, bio- and hemo-compat.)

Saddow et al, IEEE NMDC, Catania, Sicily (IT) October 2014




SIC Intracortical Neural Interfaces (INI)

3C-SiC has properties useful for many biomedical devices, such as

neural interfaces:

* 3X hard surgical

trauma

* Biocom lyimide

e Can be iC
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Implantable Microelectrode Challenges

Single unit recordings not
advantageous due to
reliability challenges

Parylene C, Pt-Ir used for device
insulation and conductors.

Parylene C cracking/delamination
Pt-Ir for micro-scaled devices has
Limited current density

*[1]J. C. Barrese, J. Aceros, and J. P. Donoghue, "Scanning electron microscopy of
chronically implanted intracortical microelectrode arrays in non-human primates," J
Neural Eng., vol. 13, p. 026003, Jan 29 2016.



Cubic SIC — Robust Microelectrode?

* SiCis a well-known chemically inert semiconductor:
* Processed like Silicon (Neuronexus, etc.) = Microelectrode array (MEA) capable
* Grown on Si wafers (low-cost) and micromachining/fab ~ identical to Si
» Offers larger junction voltages (1.6 V vs. only 0.7V for Si) = simulation possible?

* No measured chronic inflammatory response in 2 animal models

* Multitude of solid-state forms:
* Poly-crystalline and amorphous SiC (a-SiC which is an excellent insulator)
* Single crystal polymorphs (hexagonal and cubic): 3C-SiC with 2.3 eV
* Allows for microelectrode support, conductor and insulator in single material system

Wild type Mouse 30 DIV
Null response

4

N | 3C-SiC probe Implantation

2mm long site of

No Immune response in 3 animal models (Mouse, Rat, Pig) to date...




3C-SIC probes vs. coated Si probes

Si and 3C-SiC probes fabricated using same technology
3C-SiC 3X as hard and 3X as flexible:

Measured Mechanical Properties®

Material Type Hardness Elastic Mod. | Fracture tough.
[GPa] [GPa] [MPa-m?/2]*
(100)si 12.46 +0.78 | 172.13+7.76 1.59+0.21
(100)3C-SiC 31.19+ 3.7 433 + 50 4.6
Poly-3C-SiC 33.54+3.3 457 + 50 2.18

* Measured via nanoindentation.

" Crack lengths used to calculate the film fracture toughness.

Main advantage of 3C-SiC instead of polymer-coated
Si is thinner probe thickness (6 um vs. 15 um for Si)

*C. Locke, G. Kravchenko, P. Waters, J. Deva Reddy, A. A. Volinsky, C. L. Frewin, S. E. Saddow, ECSCRM ‘08




Monolithic All-SIC MEA: a robust solution

* In all-SiC technology, a pn diode blocks current flow and an amorphous SiC (a-SiC) insulator caps
the metallic-like electrodes:
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all-SiC-based MEA

No metals or plastics = robust SiC only




How does this work?

* Degenerately doped semiconductors = semi-metallic conduction

* no need for metal electrodes to carry bi-directional signals

* Metal electrodes, such as Ptlr, typically processed to form ceramic-like properties

* 3C-SiCis already a ceramic

e a-SiCis highly insulating

* All-SiC materials integrated to create a monolithic device

16

All-SiC IDE
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Leakage for 16 IDEs below
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* In this case also isolation
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All-SiIC INI Fabrication flow

a) 4H-SiC epi wafer** b) 4H-SiC n++ ) DRIE etch
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Fabrication flow (a through f) for 4H- all-SiC planar neural microelectrode.

Fab for 3C-SiC devices identical with underlying Si substrate.

Planar MEA
Single ended electrodes

Double ended resistors
PN Diodes

Bernardin, E.K.; Frewin, C.L.; Everly, R.; Ul Hassan, J.; Saddow, S.E. Demonstration of a Robust All-Silicon-Carbide
Intracortical Neural Interface. Micromachines 2018, 9, 412. https://doi.org/10.3390/mi9080412



https://doi.org/10.3390/mi9080412

Electrochemical Performance

Dependence on electrode tip area studied

Capacitive characteristic, as expected, observed

Impedance and cyclical voltommetry performed

Planar all-SiC MEA consistently displayed electrode-like performance

Current Density mA/cm?2

Cyclic Voltamme3tsry in PBS 7.4 pH 50 mV/s
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4H-SiC performed better than Pt electrode

|Z| ~675kQ (496 um?) and ~46kQ (500K pm?)




Electrochemical Performance

4H-SiC Electrode CV vs. Area

4.00

90

Standard V
Sweep y -2V to 2.8V
(-0.6t0 0.8 V) Sweer
m weep
110

Note scale difference

500K pum?
125K pm?

7.85K pum? s
1.96K pm? s
0.46K pum? e

Increasing recording/stim tip area decreases Z and increases
Charge capacity, as expected.




Advantages of Cubic SiC over 4H-SIC

* Biggest challenge is removal of the substrate for implantable MEA’s
* One solution is to grow 3C-SiC on SOl = oxide release layer
* Films grown at IMM-CNR (Catania)

 Allows for integration with electronics (Si) on tab.

All-SiC (3C-SiC) Device on SOI
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Probe release (HF)

Shank = 5.1 mm long
Tab = 6.64 x 2.3 mm

Newest 16 electrode Monolithic 3C-SiC Implants

Micromachines, 10 (7), p.430 2019

Beygi, M., et al, “Fabrication of a Monolithic Implantable Neural Interface from Cubic Silicon Carbide.”




Fabrication of a Monolithic 3C-SiC/SOIl

Implantable Neural

EIS & CV measurements
» Results of 4 microelectrodes
» Average of 3 replicates

> |Z| @ 1kHz > ~165 kQ

» Electrode-electrolyte shows a
predominantly capacitive
behavior

» Rate of 50 mV/s
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MRI compatible neural interfaces

fl_eft: Dual-shank MRI
compatible Ptir
electrodes (12.1 mm
L, 160 um diameter)
Right: 3C-SiC dual
passive probe (7mm
L, 15 um thick, ~

Q015 n-doped)
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Sagittal View

MRI Images @ /T

Even a thin (~27 um) Si layer results in noticeable image artifacts

All-SiC free-standing probe displays no artifact @7T and is barely visible!

Shank

Contact

Pads

Coronal View

Free-standing All-SiC INI

No Si device layer

All-SiC INI
(Si device layer)

Beygi, M.; Dominguez-Viqueira, W.; Feng, C.; Mumcu, G.; Frewin, C.L.; La Via, F.; Saddow, S.E. Silicon
Carbide and MRI: Towards Developing a MRI Safe Neural Interface. Micromachines 2021, 12, 126.
https://doi.org/10.3390/mi12020126



https://doi.org/10.3390/mi12020126

Summary

* Silicon Carbide is highly neuro-compatible
* In-vitro and in-vivo (3 animal models) 2 no immune system trigger

* [t is possible to create a monolithic INI with only SiC
* No plastics (polymers) or metals to degrade in-vivo
* Use of PN junction substrate isolation

* Use of amorphous SiC capping layer
* |IDE data shows greater than + 50V breakdown (I < 1 nA) in 4H-SiC devices

e 3C-SiC on Si and SOI promising to allow for low-cost manufacturing
* SOl = HF dip probe harvest

* Higher CSC than 4H-SiC but with higher leakage current (Gen 1)
* Gen 2 fabricated — packaging and testing pending

* Preliminary MRI compatibility testing in tissue phantom @7T
* No visible image artifacts (SiC only)
* Numerical modeling = below SAR limit (not presented)
* In-vivo confirmation planned (summer 2021)

20
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Thank you for your kind attention!

Silicon Cz

© 2000 Randy Glasbergen. Biotechn

www.glasbergen.com

“THE COMPUTER SAYS | NEED TO UPGRADE MY BRAIN
TO BE COMPATIBLE WITH ITS NEW SOFTWARE."




Prof. Dr. Saddow Overview

* PhD in Electrical Engineering (electrophysics) 1993 (Uni of Maryland)

* Professor of Electrical and Medical Engineering, Uni of South Florida,
Tampa, FL

* Develop silicon carbide (SiC) materials and devices for biomedical
applications

* Neural interfaces: Bionics, BMI, etc.

* |n-vivo sensors: blood, etc.

* Bioelectronics: wearable sensors (wireless sleep, personal locator beacon, etc.)
* Nanotechnology to treat deep-tissue cancer

* Innovation comes when you work at the nexus of different
technologies/fields of endeavor

* In my case EE, physics, chemistry, medicine, material science,
mechanics...



Simulation of INI Materials — Brain Phantom

Induced heating caused by interaction with MRI fields = tissue damage

Simulated SAR* vs. implant probe material

SAR (W/kg)
gg’ Inside the box

:‘:l Whole Head Max Max Max
10g 1g 0.1g

Ref. 2.55 5.83 6.68 7.28
All-3C-SiC 2.54 5.91 7.16 21.15
3C-SiC Tip [ 2.55 5.87 6.75 7.32
iridium 2.55 6.01 10.82 39.24
titanium 2.54 5.98 9.51 32.73
platinum 2.54 5.97 10.36 37.05
Ir0, 2.55 6.00 9139 32.19
TiN 2.55 5.98 8.87 30.04

*SAR Specific Absorption Rate (W/kg)




Simulation of INI Materials — Brain Phantom

Image Artifacts caused by interaction with MRI fields = difficult to ‘see’ detail near INI

Estimated AB, caused by Ay
Assumed BO=7T

FOV=256x%256 pixels

Voxel size Immx1mmx1lmm

Max AB,=100uT & Min AB,=-0.3uT

Averaged x from literature

1) 3C-SiC
2) Si

3) Pt

Max = 100 uT
Min=-0.3 uT
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