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Abstract

The collective cell migration is thought to be a dynamic and interactive behavior of cell
cohorts which is essential for diverse physiological developments in living organisms. Recent
studies revealed that topographical properties of the environment regulate the migration modes
of cell cohorts, such as diffusion versus contraction relaxation transport and the appearance of
vortices in larger available space. However, conventional in vitro assays fail to observe the
change in cells behavior in response to the structural changes. Here, we have developed a
method to fabricate the flexible three-dimensional structures of capillary microtunnels to
examine the behavior of vascular endothelial cells (ECs). The microtunnels with altering
diameters were formed inside gelatin-gel by spot heating a portion of gelatin by irradiating the
um-sized absorption at the tip of the microneedle with a focused permeable 1064 nm infrared
laser. In contrast to the 3D straight topographical constraint, which exhibited width
dependence migration velocity, leading ECs altered its migration velocity accordingly to the
change in supply of the cells behind the leading ECs, caused by the progression through the
diameter altering structure. Our findings provide insights into the collective migration
properties in 3D confinement structures as fluid-like behavior with conservation of cell
numbers.

Keywords: Three-dimensional culturing environment, collective cell migration,
microfabrication technology, vascular endothelial cells, fluid-like behavior




Introduction
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situation, microfabrication technology that can flexibly change the structure is required NONH




Results and Discussion

Developed Microfabrication Technology
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Fig. 2. Developed microfabrication set-up




Results and Discussion

Developed Microfabrication Technology
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Fig. 3. (A) Illustration of the process of gelatin microfabrication (B) A
series of micrographs during the process of microtunnel formation (C)
Illustration representing the process of generating a tunnel




Results and Discussion

Relationship between tunnel diameter and laser power
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Results and Discussion

Various microfabricated structures
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Fig. 5. Examples of various microtunnel structures (A)Straight (B)Narrow to
wide (C)Wide-narrow-wide (D) Gradually narrow-wide
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Fig. 6. (A) The bright field images of the collective cell migration into the 50
pm straight capillary microtunnel (B) Initial collective cell migration velocity
and the change of migration velocity at the 100 um length point (C)




Results and Discussion

Collective cell migration inside diameter changing structures

An example demonstration of the technology for forming the migration environment
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Fig. 7. Obtained time-lapse imaging of the collective cell migration on the inner
peripheral surface of the generated three-dimensional microtunnel and the
associated velocity analysis of the cell tracking on the image slices.

* Succeeded in the observation of collective cell migration inside

varying diameter structure

* Change in microtubular structure was accompanied by a change in
migration velocity

* For wide to narrow to wide, velocity increased as the tunnel
constricted, and then decreased after the tunnel widened




Conclusion

1) We have developed a gelatin-gel microfabrication
technology for the formation of flexible three-dimensional
structures.

2) Various structures on which cells can migrate inside was
formed for the observation of cellular dynamic properties.

3) We have succeeded 1n the observation of changes 1n cell
dynamics, particularly, the cell sheet velocity in response to
structural changes.

Currently in submission process for review in a journal
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