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Abstract
We examined characteristics of the propagation of conduction in width-controlled cardiomyocyte
cell networks for understanding the contribution of the geometrical arrangement of
cardiomyocytes for their local fluctuation distribution. We tracked a series of extracellular field
potentials of linearly lined-up mouse primary cardiomyocytes and human ES cardiomyocytes with
100 kHz sampling intervals of multi-electrodes signal acquisitions and an agarose
microfabrication technology. Conduction time between two neighbor microelectrodes showed
Gaussian distribution, which indicates this conduction propagation in a unit length was a
stochastic firing phenomenon. However, the distributions of conduction time were not expanded
but maintained within an identical range of distribution regardless of their propagation distances
from 0.3 mm to 1.5 mm, which is against the expected distance-dependent enlarging of the
distribution based on the faster firing regulation. In contrast, when Quinidine was applied to the
cardiomyocytes, the distributions of conduction time were expanded as propagation distance
increased as predicted by the conduction propagation model of faster firing regulation. The results
indicate the “faster firing regulation” is not sufficient to explain this conservation of the
propagation time distribution in cardiomyocyte networks.

Keywords
on-chip	cell	network	assay,	multi	microelectrode	array,	external	field	potential	measurement,	
conduction	distribution,	cardiomyocyte	network
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Introduction
Can explain the excitation conduction by the faster firing regulation?
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Fig.1. The histogram of conduction time distribution.
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Result and Discussion（1）
Agarose Microfabrication and Cell Culture

Fig.2. MEA chip microfabrication procedure. 
multi-electrode array chip
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Fig.3. Agarose microfabrication technology. 

MEA chip

CCD camera
Infrared laser 

(1480 nm)

Objective lens

Dichroic mirror

Agarose
Water

Collagen

200 µm

Pre cultured on dish 

Cardiomyocyte

300 μm

Cardiomyocyte
network

Electrode

Trypsinization 
and 

Cell suppression
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Result and Discussion（2）
Measurement System and Data Analysis
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Fig.5. MEA system. 
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Result and Discussion（3）
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Fig.7. Primary cardiomyocyte networks. 
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Result and Discussion（4）
Human ES Cardiomyocyte Networks
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Fig.9. Histograms of conduction time.
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Result and Discussion（4）
Human ES Cardiomyocyte Networks
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The	distributions	of	conduction	time	maintained	
within	an	identical	range	of	distribution	regardless	
of	their	propagation	distances.
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The	distributions	of	conduction	time	were	
expanded	as	propagation	distance	increased.
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Result and Discussion（5）
Distribution of Conduction Time 

Applied Quinidine 
for sodium-ion 

channel blocking

Average

S.D.

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

10
0 

μm
 w

id
th

20
0 

μm
 w

id
th

30
0 

μm
 w

id
th

Av
er

ag
e 

of
 c

on
du

ct
io

n 
tim

e 
[m

s]

Conduction distance x300 [µm]

Mouse primary
hES

Control

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

Standard deviation of conduction tim
e [m

s]

hES
Quinidine 3 μM

hES
Quinidine 9 μM

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6

0

1

2

3

0

10

20

30

0 1 2 3 4 5 6
Conduction distance x300 [µm]

Fig11. Comparison of fluctuations of conduction time in cardiomyocyte networks. 
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Result and Discussion（6）
Can explain the excitation conduction by the faster firing regulation?
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Result and Discussion（6）
Can explain the excitation conduction by the faster firing regulation?

Simulation Result
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Conclusions
（１）We succeed in constructing measurement assay of excitation conduction time in

width-controlled linearly lined-up cardiomyocyte network on the multi electrode
array chip.

（２）We observed the distributions of conduction time maintained their range of
distribution without any expansion regardless of its propagation distances from 0.3
mm up to 1.5 mm, which is against the conventional conduction connection rule,
“faster firing regulation” .

（３）We also observed the distributions of conduction time were expanded as
propagation distance increased when Quinidine was applied, which was followed to
“the faster firing regulation.”

Above （２）and （３） suggest the existence of some unknown cooperative conduction
propagation regulation in cardiomyocyte conduction, which is disappeared by the sodium
channel blocking.

In detail, please visit our publication in this issue
Sakamoto, Kazufumi, et al.  Micromachines 11.12 (2020): 1105.
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