Acinetobacter baumannii is a photograph by Dennis Kunkel Microscopy/science Photo Library which was uploaded on September 23rd, 2018.

Mutational analysis of AdeB

transporter function

Inga V. Leus, Anhthu Trinh, Anika Patel,

Valentin V. Rybenkov and Helen I. Zgurskaya

Department of Chemistry and Biochemistry,

University of Oklahoma, Norman, OK 73072

Figure 1. A schematics of AdeABC efflux pump in the cell envelope of *A. baumannii*. The *adeA*, *adeB* and *adeC* genes form an operon, encoding a membrane fusion protein, a multidrug transporter and an outer membrane channel, respectively.

We targeted:

- (1) E89, F178, F277, and W610from the two distal binding sites;(2) I663 from the conserved flexible
- loop connecting the cleft entrance to the proximal drug-binding pocket;
- (3) W568, D664 and E665 from the proximal multi-drug binding site;
- (4) W708 located at the entrance of the periplasmic cleft;
- (5) N932 involved in the proton relay network

Figure 2. Structure of AdeB trimer with mutated residues indicated

Christopher E Morgan, Przemyslaw Glaza, **Inga V Leus**, Anhthu Trinh, Chih-Chia Su, Meng Cui, Helen I Zgurskaya, Edward W Yu. <u>Cryoelectron Microscopy Structures of AdeB Illuminate Mechanisms of Simultaneous Binding and Exporting of Substrates Mbio, 2021</u>

DOI: 10.1128/mBio.03690-20

Leus IV, Weeks JW, Bonifay V, Smith L, Richardson S, Zgurskaya HI. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J Bacteriol. 2018;200(13): e00049-18. doi:10.1128/JB.00049-18

Table 1. Minimal inhibitory concentrations (MICs) for *A. baumannii* strains with AdeB carrying the indicated aminoacid substitutions.

AdeB variants	EtBr	Gentamicin	Zeocin	Azithromycin
Δ3	4-8	8-16	1	0.64
AdeB	32-64	32	16-32	10-20
F178C	16-32	64-128	>256	10
W610C	32-64	8-16	16	10 -20
1663C	32-64	8-16	8-16	10
D664C	16-32	16	4-8	2.5-5
E665A	16-32	16	8	10
W708C	32	8-16	8-16	10
N932C	32	16	4	5-10
E89A	32-64	8	32	20
F277C	16	16-32	32	10-20
W568C	32	16	32	20

D644C mutant is hypersusceptible to macrolides

Figure 3. MICs of representative macrolides. Antibiotics are abbreviated as the following: Ery, erythromycin; Soli, solithromycin; Clari, clarithromycin; Spira, spiramycin; Diri, dirithromycin; Decla, Descladinose azithromycin; Azi, azithromycin

azithromycin

spiramycin

Descladinose azithromycin

erythromycin

F178C substitution enhanced efflux of gentamicin and zeocin

Figure 4. Concentration-dependent inhibition of growth by zeocin (ZEO), and gentamicin (GEN).

Figure 5. AdeB trimer structure with the amino acid substitutions highlighted in one of the AdeB protomers (green).

Conclusions:

- Out of ten mutated AdeB variants containing single amino acid substitutions, only F178 and D664 residues were identified to be crucial for the function of the pump
- D644C mutant with a substitution in the proximal multi-drug binding site was more susceptible to structurally diverse macrolides
- F178C substitution in the distal binding site enhanced protection against gentamicin and zeocin
- Our results provide a novel insight into the mechanism of AdeB and demonstrate that this transporter is an attractive target for pharmacological development.

Lab members: Helen I. Zgurskaya Justyna Adamiak Vincent Bonifay Svitlana Babii Brinda Chandar Jitender Mehla Mohammad Moniruzzaman Illia Afanasiev Marcee Olvera Sam Twahirwa Muhammad Ramiz Uddin

Students:

Anhthu Trinh Anika Patel

Funding:

Department of the Defense, Defense Threat Reduction Agency (HDTRA1-14-1-0019) NIH/NIAID grant RO1AI132836

Collaborators:

Valentin V. Rybenkov Zoya Petrushenko Hang Zhao Rupa Sarcar W Yu Edward Chih-Chia Su Christopher E Morgan Przemyslaw Glaza Meng Cui

Northeastern University

Bouvé Collegeof Health Sciences

