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Abstract: As human population is growing worldwide, the food demand is sharply increasing. Fol-

lowing this assumption, strategies to enhance the food production are being explored, namely smart 

farming, for monitoring crops during the production cycle. In this study, a vineyard of Vitis Vinifera 

cv. Moscatel located in Palmela (N 38º 35’ 47.113’’ O 8º 40’ 46.651) was submitted to a Zn biofortifi-

cation workflow, through foliar application of zinc oxide (ZnO) or zinc sulfate (ZnSO4) (respec-

tively, at a concentration of 60% and 90% - 900g.ha-1 and 1350g.ha-1). The field morphology and 

vigor of the vineyard was performed through Unmanned Aerial Vehicles (UAV’s) images (assessed 

with altimetric measurement sensors), synchronized by GPS. Drainage capacity and slopes showed 

1/3 of the field with reduced surface drainage and a maximum variation of 0.80 m between the 

extremes (almost flat) respectively. The NDVI (Normalized Difference Vegetation Index) values re-

flected a greater vigor in treated grapes with treatment SZn90 showing a higher value. These data 

were interpolated with mineral content, monitored with atomic absorption analysis (showing a 1.3 

fold increase for the biofortification index). It was concluded that the used technologies furnishes 

specific target information in real time about the crops production. 
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1. Introduction 

By 2050, due to the increase of the world population, to avoid hunger, food produc-

tion must significantly increase [1]. Besides, to ensure safety, food also must have high 

quality, namely at a prophylactic level, providing the necessary nutrients, since it is ex-

pected that their deficiency might affect the health of more than two billion people world-

wide [2, 3]. In this context, some alternatives are being suggested, namely agronomic bio-

fortification to increase target nutrients in edible plant tissues. This alternative can be ac-

complished through soil and foliar application, yet this last seems to allow plants to as-

similate micronutrients with high efficiency, as it does not depend upon root-to-shoot 
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translocation [4, 5]. Beyond the main aims of agronomic biofortification, some evidence 

showed that yield and nutritional quality increases with this practice [6]. 

Zinc deficiency continues to affect around three billion people worldwide, leading to 

the appearance, among others, of neurological disorders, autoimmune, degenerative dis-

eases related to age, Wilson's disease, cardiovascular problems, and diabetes mellitus [7].  

To address this increase in food demand, other factors also may be considered like 

climate change, the limited availability of arable lands, as well as the growing necessity 

for freshwater, making it indispensable to resort to new technologies such as Unmanned 

Aerial Vehicle (UAVs). This technology can carry different types of cameras such as mul-

tispectral that allows users to obtain vegetation indices translated by Normalized Differ-

ence Vegetation Index (NDVI), providing us with information about biomass levels and 

stress conditions like crop diseases, water stress, pest infestations, nutrient deficiencies 

and other factors that affect crop productivity [8]. Regarding other advantages of UAVs, 

acquirement of field data its arried out more easy, fast and cos-effective way [9]. Following 

this assumption, the present study used multispectral images from UAVs to monitor Zn 

biofortified vineyards, once this fruit plays a predominant role in the development of the 

world and, according to the Food and Agriculture Organization (FAO), covers 75.866 

square kilometers worldwide, additionally helping in some health problems [10]. 

2. Materials and Methods 

2.1. Experimental Field 

Biofortification with Zn was performed in a Vitis vinifera L. variety Moscatel field 

located in Lau Novo, Palmela, Portugal (38º 35’ 47.113’’ O 8º 40’ 46.651’’ W), under irriga-

tion conditions. Foliar application with zinc sulfate (ZnSO4) and zinc oxide (ZnO), at con-

centrations of 0%, 60% and 90% (0, 900 and 1350 g ha-1) was performed between 29th of 

June and 19th July, with harvest being carried out at 10th September of 2019. 

2.2. Field Morphology and vigor of the Vine 

Flight planning and execution was performed to obtain images with a high resolution 

RGB (20Mp) and Parrot Sequoia Plus installed multispectral cameras in an unmanned 

aerial vehicle (UAV), model DJI Phantom 4 Pro +. The multispectral camera had four band 

sensors: Green (550 BP 40), Red (660 BP 40), Red Edge (735 BP 10) and Near Infrared (790 

BP 40). After acquisition of images, an orthophotomap was processed and, using the al-

timetry data, the digital model of the terrain (MDT) was obtained, as well as the surface 

drainage model (using the ARCGIS and Agisoft Photoscan software), being created the 

vegetation index maps that reflect the vigor of the plants (NDVI) [11]. 

2.3. Quantification of Zn in grapes  

At harvest, grapes were cut, dried (until constant weight, at 60oC) and subjected to 

an acid digestion procedure with a mixture of HNO3-HCL (4:1), according to [12]. Then 

the samples were filtrated, and Zn contents were measured using an atomic absorption 

spectrophotometer model Perkin Elmer AAnalyst 200, fitted with a deuterium back-

ground corrector, and the AA WinLab software program.  

2.4. Statistical Analyses 

Data were statistically analyzed using a One-Way ANOVA (p ≤ 0, 05) to access dif-

ferences, followed by a Tukey’s test for mean comparison (95% confidence level). 

3. Results 

The slopes of the experimental field were determined, being found a moderate sur-

face drainage prevailing, with 63.86% of infiltration capacity (Table 1). 

Table 1. Slope characterization before foliar application of Lau Novo field. 
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Slope classes (%) Surface Drainage Area (m2) % Area 
[0 – 5 %] Reduced 589.9 34.87 
]5 – 20] Moderate 1080.5 63.86 
> 20 % Elevated 21.4 1.27 

Total 1691.8 100 

Zn contents in treated grapes showed, relatively to the control, 1.2 - 1.3 fold increases 

in the higher concentrations of treatments, OZn90 and SZn90 respectively (Table 2).  

Table 2. Average content + S.E. (n = 3) of Zn in fruits at harvest of Vitis vinifera L. variety Moscatel. Letter a indicate the 

absence of significant differences among treatments (P< 0,05). Treatments OZn60, OZn90, SZn60 e SZn90 indicate the 

following concentrations for zinc oxide (ZnO) or Zinc sulfate (ZnSO4): 0%, 60%, 90%. (i.e., 0, 900 e 1350 g ha-1 ). 

Moscatel variety 
Zn (ppm) 

Mean SE 

Control 6.04a ± 0.67 

OZn60 6.44a ± 0.50 

OZn90 7.91a ± 0.28 

SZn60 6.58a ± 0.65 

SZn90 7.49a ± 0.75 

After the 4th treatment, Moscatel treated grapes revealed a positive response, show-

ing higher NDVI values than the control, with treatments SZn displaying highest foliage 

densities (Table 3; Figure 1). 

 

Figure 1. NDVI index of Lau Novo field after the 4th application (1-Control; 2- Treatment ZnSO4 60 %; 3- Treatment ZnSO4 

90%; 4- Treatment ZnO 60%; 5- Treatment ZnO 90%). 

Table 3. Average vigor + S.E. (n = 3) in fruits of Vitis vinifera L. variety Moscatel after the 4th application. Letter a indicate 

the absence of significant differences among treatments (P< 0,05). Treatments OZn60, OZn90, SZn60 e SZn90 indicate the 

following concentrations for zinc oxide (ZnO) or Zinc sulfate (ZnSO4): 0%, 60%, 90%. (i.e., 0, 900 e 1350 g ha-1). 

Treatment Mean SE 

Control 0.58 0.18 

OZn60 0.61 0.16 

OZn90 0.61 0.18 

SZn60 0.64 0.15 

SZn90 0.64 0.14 

4. Discussion 

Climate changes are a concern among winemakers, as grapes are one of the fruit 

crops most sensitive to severe drought conditions and water shortage [13]. Water shortage 

is considered one of the most stressful promoters in grapes, leading to yield and quality 
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losses. Under these conditions, decreases in relative water content (RWC), leaf dry matter, 

chlorophyll (Chl) content, net photosynthetic rate (PN), ribulose-1,5-bisphosphate carbox-

ylase (RuBPC) and nitrate reductase (NR) activities of Riesling grapevines can develop 

[14].  

Portuguese climate is becoming more dryer, being indispensable to develop adapta-

tion strategies to face water scarcity. In this framework, a smart irrigation, optimizing 

grape composition and providing a balanced solution between environment and plant 

requirements can become a relevant option. Indeed, with higher dryness, and without 

irrigation, yield reductions were already found in Portugal (i.e., Alentejo, Lisboa, Minho 

and Terras-da-Beira) [15]. Moreover, an efficient irrigation showed a diminishing volume 

of water applied to crops fields by 30–70% and an increase crop yields by 20–90% [16]. 

According to our data, the experimental field with Moscatel grapes, showed a moderate 

capacity of surface drainage in 63.86% of the area (Table 1), which determines a moderate 

infiltration capacity, contributing to the groundwater recharge (i.e., water available for 

plant growth) [17]. Additionally, as this field is being irrigated, the potential hydric stress 

derived by rain scarcity, observed in the last decades, is being mitigated.  

In Turkey, fertilization with Zn was carried out by leaves spraying, which deter-

mined increases in productivity of about 25% in cereals, with the concurrent augmenta-

tion of Zn contents in the edible parts of the plants [18]. Our study also showed an increase 

of Zn contents in grapes sprayed with ZnO and ZnSO4 (Table 2). Besides, following [19, 

20], Zn biofortification through foliar application, also affected yield parameters. Indeed, 

through vegetation indices, namely NDVI, is possible to access health conditions, provid-

ing information of photosynthetic capacity, which can be correlated with plant vigor and 

vegetation abundance, health and growth [21, 22]. This index has values normalized be-

tween +1 and -1, with higher values indicating a denser vegetation [22]. In fact, our data 

showed higher values for NDVI in the vines fertilized with ZnSO4 and ZnO, relatively to 

the control, but treatments with ZnSO4 triggered a higher vigor (Table 3).  

5. Conclusions 

Through images obtained with cameras attached to UAV’s, it’s possible to get infor-

mation about morphology of the field and potential limiting conditions for vines devel-

opment. Using the Moscatel field as a test system, important characteristics, namely mod-

erate infiltration capacity and the use of irrigation, enabling vines to have more resistance 

to hydric stress were optimized. The obtained images further gave information about the 

crops state, being detected a positive response to Zn fertilization with an increase in the 

Zn contents and vigor of vines subjected to ZnO and ZnSO4.  
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