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Abstract: Plants are exposed to continuous environmental challenges and depending on the inten-

sity and time of exposition to a specific environmental condition, plants either overcome the adverse 

situation or undergo a different level of damages such as a nitro-oxidative stress. Xanthine oxidore-

ductase (XOR) is an FAD-, molybdenum-, iron- and sulfur-containing hydroxylase enzyme in-

volved in the purine catabolism pathway that catalyzes the conversion of hypoxanthine/xanthine to 

uric acid with the concomitant formation of either NADH or superoxide radical (O2•−) which is then 

dismutated into H2O2. In fact, under oxidative stress conditions, XOR is considered to participate in 

the generation of reactive oxygen species (ROS). Using pea (Pisum sativum L.) plants exposed to six 

different environmental conditions including high light intensity, low and high temperature, con-

tinuous light, continuous dark and mechanical wounding, XOR was analyzed at protein and gene 

expression levels. The obtained data suggest that XOR is modulated differentially under the assayed 

stress conditions being the low temperature the situations with causes the highest differences of 

enzyme activity and gene expression. 
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1. Introduction 

Xanthine oxidoreductase (XOR) is an enzyme involved in the purine catabolism 

pathway that catalyzes the conversion of hypoxanthine and xanthine to uric acid which 

the concomitant formation of either NADH or superoxide radical (O2•−). It plays an im-

portant role in nucleic acid degradation in all organisms being considered also a source 

of nitrogen in higher plants [1,2]. However, the involvement of XOR activity has been 

associated with other processes in higher plants such as nodule metabolism in legumes 

[3], leaf senescence [4,5], fruit development [6], as well as in the mechanism of plant re-

sponse to pathogen microorganisms [7–9]. 

In previous studies, we showed that XOR activity was affected in pea plants under 

salinity and cadmium stress [10,11]. Consequently, using pea plants as a model, the pre-

sent study has the goal to explore how the XOR activity, as well as protein and gene ex-

pression, is modulated by other stressful conditions including high light intensity, low 

and high temperature, continuous light, continuous dark and mechanical wounding. 

Taken together, the data indicate that among these assayed conditions, the low tempera-

ture was the environmental conditions that modulate positively the pea XOR activity and 

gene expression. 
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2. Materials and Methods 

2.1. Plant Material and Growth Conditions 

Pea (Pisum sativum L., cv. Lincoln) seeds were obtained from Royal Sluis (Enkhuizen, 

Holland). Seeds were surface sterilized with 3% (v/v) commercial bleaching solution for 3 

min, and then washed with distilled water, and germinated in vermiculite for 3–4 days 

under growth chamber conditions (16 h light, 24 °C/8 h dark, 18 °C under a light intensity 

of 190 µE m−2 s−1; 80% relative humidity). Healthy and vigorous seedlings of 3 weeks were 

selected and exposed to different stress conditions as previously described [12]. Briefly, 

these conditions were: (i). High temperature (HT): plants were sequentially exposed to 

30 °C for 1 h, 35 °C for 1 h and finally, 38 °C for 4 h. (ii). Low temperature (LT): plants 

were exposed for 48 h at 8 °C; (iii). High light intensity (HL): pea plants were irradiated 

for 4 h at 1189 µE s−1 m−2, using a lamp GE 300 W-230 V PAR 56/WFL (General Electric); 

(iv). Continuous light (CL): plants were continuously illuminated for 48 h at 190 µE s−1 m−2; 

(v). Darkness (D): pea plants were kept in darkness in a growth chamber for 48 h; and (vi). 

Mechanical wounding (W): pea leaves were injured in planta by clicking them with a 

striped-tip forceps, and after 4 h damaged leaves were collected and analyzed [13,14]. In 

all cases, the control pea plants were kept in the growth chamber under optimal condi-

tions being processed at the same time that plants subjected to the different stress condi-

tions. 

2.2. Crude Extracts of Pea Leaves 

Pea leaf homogenates were prepared in 50 mM Tris-HCl buffer, pH 7.5 containing 

0.1 mM EDTA-Na2, 0.2% (v/v) Triton X-100, 1 mM MgCl2, glycerol 10% (v/v) and 2 mM 

1,4-dithiothreitol (DTT), homogenizing the sample with nitrogen liquid in mortar, and 

using a weight/volume ratio of 1: 4. Subsequently they were centrifuged at 27,000× g for 

30 min at 4 °C. The supernatants obtained were used for further analysis. Protein concen-

tration was determined with the Bio-Rad Protein Assay (Hercules, CA, USA), using bo-

vine serum albumin as standard. 

2.3. In-Gel XOR Activity Assay and Immunoblot Analyses 

Non-denaturing PAGE was performed on 6% acrylamide gels according to [15]. Sam-

ples for electrophoresis were prepared in 10% (v/v) glycerol and gels were run at a con-

stant current of 10 mA/gel. XOR activity was visualized by incubating the gels in a solu-

tion consisting of 50mM Tris–HCl, pH 7.6, 0.50 mM xanthine, 0.5 mM, NAD+, 0.25 mM 

NBT, 30 mM TEMED [11,16]. The appearance of the blue formazan bands over a colorless 

background was monitored and the reaction was stopped by immersing the gels in 7% 

(v/v) acetic acid. 

For immunoblot analyses under non-denaturing conditions, after PAGE protein sam-

ples were transferred onto polyvinylidene fluoride (PVDF) membranes (Immobilon P, 

Millipore Corp., Bedford, MA, USA) using a semi-dry transfer system (Bio-Rad Laborato-

ries) with 10 mM CAPS buffer, 10% (v/v) methanol, pH 11.0, at 1.5 mA · cm2 for 2 h. For 

immunodetection of XOR, a polyclonal antibody against rat liver xanthine oxidase (XOD; 

[17], diluted 1/500, was used. As the secondary antibody, a goat anti-rabbit IgG-horserad-

ish peroxidase conjugate (Bio-Rad), diluted 1/10,000, was used. To detect the immunore-

active bands an enhanced chemiluminescence method with luminol was used [18]. 

2.4. RNA Isolation and Cloning of a Partial cDNAs of Pea Xanthine Oxidoreductase 

Total RNA was isolated from pea leaves with the Trizol Reagent (GibcoBRL, Paisley, 

UK) as described in the manufacturer’s manual, and RNA was quantified spectrophoto-

metrically. Two micrograms of total RNA were used as a template for the reverse tran-

scriptase (RT) reaction. It was added to a mixture containing 1.5 mM dNTPs, 1.6 µg pol-

ydT23 primer, 1 µL RT-Buffer (25 mM Tris-HCl, pH 8.3, 5 mM MgCl2, 50 mM KCl and 2 

mM DTT), 0.9 U RNasin ribonuclease inhibitor and 20 U avian myeloblastosis virus RT 
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(FINNZYMES, Espoo, Finland). The reaction was carried out at 42 °C for 40 min, followed 

by a 5-min step at 98 °C and then by cooling to 4 °C for 10 min. Then, the polymerase chain 

reaction (PCR) was carried out as follows: 1 mL of each cDNA was added to 250 µM 

dNTPs, 1.5 mM MgCl2, 1x PCR buffer, 2.5 U of Ampli Taq Gold (Roche, Mannheim, Ger-

many) and 0.5 mM of specific oligonucleotide designated as FXOR (5′-

CTAATTTTCCTAGCAACACTGC-3′) and RXOR (5′-CAATCCTGACCCATCTCC -3′) in 

a final volume of 20 μL. 

Reactions were carried out in a Hybaid thermocycler (Ashford, UK). A first step of 2 

min at 94 °C was followed by 30 cycles of 1 min at 94 °C, 1 min at 55 °C and 1 min at 65 °C, 

with a final extension of 10 min at 65 °C. Amplified PCR products were detected after 

electrophoresis in 1% (w/v) agarose gels stained with ethidium bromide, and the visual-

ized band was cut and extracted from the gel (Qiaex II gel extraction kit; Qiagen, Madrid, 

Spain). The purified fragments were cloned into the pGEM-T easy vector (Promega, Ma-

drid, Spain). A partial cDNA of pea XOR with 418 bp was obtained and confirmed by 

sequencing. 

2.5. Northern Blot Analysis 

Total RNA from leaves of control and treated pea plants were extracted with Trizol 

reagent (Gibco BRL, Life Technologies) according to the manufacturer and stored at -80 °C. 

RNA (10 µg) was prepared in MEN buffer, 33% (v/v) formamide and 10% (v/v) formalde-

hyde and denatured at 65 °C. Agarose gels at 1.5% (w/v) were prepared in DEPC-treated 

water containing 1.6% (w/v) formaldehyde and MEN buffer (20 mM Mops, pH 7.0, 5 mM 

sodium acetate, 2 mM EDTA) [19]. After electrophoresis, RNA was capillary transferred 

overnight onto a nylon membrane (Zeta-Probe, Bio-Rad). Then, the membrane was briefly 

rinsed with 2x SSC (1.5 M NaCl, 0.15 M sodium citrate, pH 7.0) and the RNA was attached 

to the membrane with a vacuum pump for 30 min at 80 °C. The membrane was stained 

with a 0.04% (w/v) methylene blue solution prepared in 0.3 M sodium acetate, pH 5.6. 

Simultaneously, the gel was stained with ethidium bromide 0.025% (w/v) for 15 min to 

check the efficiency of the transfer. 

The probe used for mRNA detection was a 180 bp fragment of the XOR obtained 

from cDNA by PCR with the oligonucleotides FXOR2 (5′-CACCTGCCTGGTTCATAA 

GC-3′) and RXOR2 (5′-TTGAGCACTGCCCTCTATCC-3′). The probe was labelled using 

the commercial Rediprime™ II method (Amersham Biosciences). 25 ng of the probe was 

prepared in 45 µl of TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA), which was dena-

tured at 95 °C for 5 min and subsequently kept on ice for another 5 min. This mixture was 

added to the reaction tube supplied by the commercial company (which contains the en-

zyme Klenow polymerase and all deoxynucleotides except cytosine) together with 5 µ L 

of [32P] dCTP (50 µCi, 3,000 Ci/mmol, Amersham), and was incubated for 1 h at 37 °C. The 

reaction was stopped by adding 5 µl 0.2M EDTA. Deoxyribonucleotides not incorporated 

into the probe were removed using Boehringer gel filtration columns (Mini Quick Spin 

Columns). The probe, once labelled, was renatured at 95 °C for 5 min, and then placed on 

ice until added to the hybridization buffer. Filters were auto-radiographed using hyper-

film (Hyperfilm MP, Amersham Pharmacia Biotech) with an intensifying screen (from the 

same company) at −80 °C. Signal intensities were estimated from autoradiograms using a 

Shimadzu CS-9000 densitometer. 

3. Results and Discussions 

Xanthine oxidoreductase (XOR) is a complex enzyme constituted by two main subu-

nits which contain one molybdenum atom, one FAD group and two Fe2S2 centers. The 

enzyme is present in all organisms and it could appear in two forms: xanthine oxidase 

(XOD) and xanthine dehydrogenase (XDH) [20–23]. In plants, it has been considered that 

the predominant form is the XDH [24,25] which was mainly associated to root nodule 

metabolism [26,27] (Triplett, 1985; Triplett et al., 1986); however, there is evidence that 
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both forms of XOR are present in plants and can be involved in processes of stress condi-

tions such as salinity [10] or heavy metal [11]. 

Besides the relevance of the XOD in the generation of O2•−, both forms (XOD/XDH) 

produce uric acid which is an efficient peroxynitrite (ONOO-) scavenger [28,29]. This pe-

culiarity allows connecting XOR with the metabolism of reactive oxygen and nitrogen 

species (ROS/RNS) in the same reaction. Based on a previous study where we analyzed 

the metabolism of RNS in pea plants under different stress conditions, the main goal of 

the present study was to evaluate how the XOR is modulated in the same model plants 

and the same experimental conditions. 

Figure 1 shows the in-gel XOR activity assay (panel a) and immunoblot analyses of 

leaf extracts from pea plants subjected to different abiotic stress conditions described in 

Section 2.1. The intensity of XOR activity band was higher under low temperature (LT) in 

comparison to the control plants (C); however, under other assayed conditions the inten-

sity of the band activity was similar or even lower than the control. Additionally, the in-

tensity of the immunoreactive band in the assayed conditions was very similar to that 

observed in the control plants. 

 

Figure 1. Xanthine oxidoreductase (XOR) in leaf extracts from pea plants subjected to different 

abiotic stress conditions. (a) Native PAGE (6% acrylamide gels) and in-gel staining of xanthine 

oxidoreductase activity. (b) Immuno-blot probed with an antibody against rat liver XOR (dilution 

1:500). 80 μg of protein were loaded per lane. C, control; HT, high temperature (38 °C); LT, low 

temperature (8 °C); HL, high light intensity; CL, continuous light; D, continuous dark; W, wound-

ing. Results are representative from at least three different experiments. 

Likewise, Figure 2 depicts the mRNA-XOR content analyzed by Northern blotting 

using as a probe of 180 bp pair fragment obtained from cDNA (see Section 2.4). Again, a 

clear increase of mRNA-XOR levels was detected in the leaves of pea plants exposed to 

low temperature (8 °C for 48 h) as well as the leaves under mechanical wounding and, to 

a lesser extent, in those subjected to continuous darkness for 48 h. The levels of mRNA-

XOD in the leaves treated with high light intensity and continuous light decreased in com-

parison to the levels in the control leaves. The increase of XOR activity and gene expres-

sion has been described in other plant species. For example, in tomato plants under 

drought stress [30], being this increase associated with a rise of ROS production through-

out its NADH oxidase activity [31], but also in Arabidopsis where the XDH activity as 

part of the purine metabolism seems to play a role in the drought stress acclimatation [32]. 

 

Figure 2. Northern blot analysis of XOR in in leaf extracts from pea plants subjected to differ-

ent abiotic stress conditions. C, control; HT, high temperature (38 °C); LT, low temperature (8 °C); 
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HL, high light intensity; CL, continuous light; D, continuous dark; W, wounding. Results are rep-

resentative from at least three different experiments. 

4. Conclusions 

The obtained data indicate that pea XOR is modulated differentially under the six 

assayed stress conditions being the low temperature the situations with causes the highest 

differences of XOR activity and gene expression in comparison to untreated pea plants. 

These data are in good agreement with those data reported previously on the metabolism 

of RNS in pea plants under the same experimental conditions [12] where the content of S-

nitrosothiols and protein tyrosine nitration content, as well as S-nitrosoglutathione reduc-

tase and L-arginine-dependent NOS-like activities, were higher under low-temperature 

stress. 
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