

VYTAUTAS MAGNUS UNIVERSITY AGRICULTURE ACADEMY

EFFECT OF HERBICIDE MIXTURES ON HERACLEUM SOSNOWSKYI CONTROL

Darija Jodaugienė, Aušra Marcinkevičienė, Aušra Sinkevičienė

Vytautas Magnus University Agriculture Academy, Lithuania

IECAG 2021 The 1st International Electronic Conference on Agronomy 03–17 MAY 2021 | ONLINE

- Some non-native plants, centuries ago brought to flower gardens, orchards or parks as an adornment, began spontaneously spread and become invasive.
- Some invasive species causes detrimental effects to human health, agriculture and natural ecosystem.
- There are about 11,000 alien species in Europe, and this number is rising rapidly.
- Currently, there are about 550 non-native plant species in Lithuania, of which about 20 species are invasive and > 60 non-native species are potentially invasive, which can cause serious ecological problems.

A plant originated from the Caucasus. In the 1950s in Lithuania was intended to grow as a fodder. Later it was widely distributed by florists and beekeepers, and then it began to spontaneously spread. It is dangerous to human health - juices cause skin burns. Extremely hazardous to children. It completely replaces habitats and is very hard to control spread.

Experimental site

- Field experiments, designed to compare the efficacy of different herbicide mixtures used to control Heracleum sosnowskyi, were conducted in 2017–2018 in Lithuania, Marijampolė district, Varnupiai (coordinates 54° 29' 19.54" north latitude, 23° 30' 45.9" east longitude).
- The soil at the experimental site was classified as Calc(ar)i-Endohypogleyic Luvisol (Drainic), according to the WRB 2014.

Treatments of the experiment:

5

- **1.** Fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹ (Tomigan[®] 180 EC 2 | ha⁻¹ + Accurate [®] 200 WG 20 g ha⁻¹),
- 2. Fluroxypyr 360 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹ (Tomigan[®] 180 EC 21 ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹),
- **3.** Fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹ (Tomigan[®] 180 EC 2 | ha⁻¹ + Accurate[®] 200 WG 20 g ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹).
- 4. Metsulfuron-methyl 4.0 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹ (Accurate[®] 200 WG 20 g ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹),
- 5. Metsulfuron-methyl 6.0 g ha⁻¹ + tribenuron-methyl 11.3 g ha⁻¹ (Accurate[®] 200 WG 30 g ha⁻¹ + Nuance[®] 75 WG 15 g ha⁻¹).

Experiment carried out in three replications. The area of one experimental plot was 18 m² (6 x 3 m).

Fig.1. Effect of herbicide Tomigan[®] 180 EC, Accurate[®] 200 WG, Nuance[®] 75 WG mixtures on plants density of Sosnowsky's hogweed, 2017

Note: Values followed by different letters are significantly different ($P \le 0.05$) based on Fisher's least significant difference (LSD) test

Fig 2. Effectiveness of herbicide Tomigan[®] 180 EC, Accurate[®] 200 WG, Nuance[®] 75 WG mixtures on Sosnowsky's hogweed after 6 week, 2017

2 week after spraying

6 week after spraying

 Tomigan[®] 180 EC 2 | ha⁻¹ + Accurate[®] 200 WG 20 g ha⁻¹ (fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹)

2 week after spraying

6 week after spraying

2. Tomigan[®] 180 EC 2 | ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹ (fluroxypyr 360 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹)

3. Tomigan[®] 180 EC 21 ha⁻¹ + Accurate[®] 200 WG 20 g ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹ (fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹)

2 week after spraying

11

6 week after spraying

4. Accurate[®] 200 WG 20 g ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹ (metsulfuron-methyl **4.0** g ha⁻¹ + tribenuron-methyl **7.5** g ha⁻¹)

2 week after spraying

6 week after spraying

5. Accurate[®] 200 WG 30 g ha⁻¹ + Nuance[®] 75 WG 15 g ha⁻¹ (metsulfuron-methyl 6.0 g ha⁻¹ + tribenuron-methyl 11.3 g ha⁻¹)

Fig.3. Effect of herbicide Tomigan[®] 180 EC, Accurate[®] 200 WG, Nuance[®] 75 WG mixtures on plants density of Sosnowsky's hogweed, 2018

Note: Values followed by different letters are significantly different ($P \le 0.05$) based on Fisher's least significant difference (LSD) test

Nuance[®] 75 WG mixtures on Sosnowsky's hogweed in spring, 2018

Without spraying, in spring

2. Tomigan[®] 180 EC 2 | ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹ (fluroxypyr 360 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹)

3. Tomigan[®] 180 EC 2 | ha⁻¹ + Accurate[®] 200 WG 20 g ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹ (fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹)

4. Accurate[®] 200 WG 20 g ha⁻¹ + Nuance[®] 75 WG 10 g ha⁻¹ (metsulfuron-methyl **4.0** g ha⁻¹ + tribenuron-methyl **7.5** g ha⁻¹)

5. Accurate[®] 200 WG 30 g ha⁻¹ + Nuance[®] 75 WG 15 g ha⁻¹ (metsulfuron-methyl 6.0 g ha⁻¹ + tribenuron-methyl 11.3 g ha⁻¹)

- Significant control (reduction of hogweed stands by 1.3 and 1.5 fold) was also identified with mixtures of fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹ and fluroxypyr 360 g ha⁻¹ + tribenuron-methyl 7,5 g ha⁻¹. A mixture of metsulfuron-methyl + tribenuron-methyl at both lower and higher rates substantially reduced the amount of Sosnowsky's hogweed plants at four weeks after spraying.
- Six weeks later, the efficacy of herbicide mixtures ranged from 44 percent with fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹ to 59.3 percent with fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹.
- In the spring of 2018, control was evaluated and the plant stand in infested fields sprayed with herbicide mixtures fluctuated from 1.0 to 3.6 plants/m² and was significant lower (by 6.4 to 23.0 fold) in contrast to control fields that were not treated. Herbicide efficacy observed was as high as 86.2–96.2 %.
- Most efficacious herbicide mixtures included fluroxypyr 360 g ha⁻¹ + metsulfuron-methyl 4.0 g ha⁻¹ + tribenuron-methyl 7.5 g ha⁻¹ and metsulfuron-methyl 6.0 g ha⁻¹ + tribenuronmethyl 11.3 g ha⁻¹.