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Abstract: Hyperspectral images (HSI) offer detailed spectral reflectance information about sensed 12 

objects under favour of hundreds of narrow spectral bands. HSI have a leading role on a broad 13 

range of applications, such as forestry, agriculture, geology and environmental sciences. Monitoring 14 

and managing of agricultural lands has a great importance on meeting nutritional and other needs 15 

of rapidly and continuously increasing world’s population. In this case, classification of HSI is an 16 

effective way to creating land use and land cover maps fast and accurately. In recent years, classi-17 

fying of HSI with convolutional neural networks (CNN) which is a sub-field of deep learning be-18 

come a very popular research topic and several CNN architectures were developed by researchers. 19 

The aim of this study is to investigate the classification performance of CNN model on agricultural 20 

HSI scenes. For this purpose, a 3D-2D CNN framework and well-known support vector machine 21 

(SVM) model were compared by using Indian Pines and Salinas Scene datasets that contain crop 22 

and mixed vegetation classes. As a result of this study, using of 3D-2D CNN has a superior perfor-23 

mance on classifying agricultural HSI datasets. 24 

Keywords: hyperspectral images (HSI); image classification; convolutional neural networks (CNN); 25 

support vector machine (SVM) 26 

 27 

1. Introduction 28 

Remote sensing data obtained from airborne and spaceborne sensors are become 29 

provide more detailed spatial and spectral resolution with the developments in recent 30 

years. Through these improvements, remotely sensed data is a time-saving and low-cost 31 

alternative to precision agriculture and forestry applications. In particular, applications 32 

like detecting and separating various vegetation species, determining the conditions of 33 

crops require a rich spectral and spatial resolution. Hyperspectral images (HSI) are the 34 

most suitable data for the aforementioned analyses, by providing high spectral resolution 35 

with hundreds of spectral bands. Many studies in the literature were performed to pro-36 

duce highly accurate classification maps and identify land cover types by classifying HSIs. 37 

However, high spectral information reveals a huge volume of data and high dimension-38 

ality. This causes Hughes phenomenon which is one of main problems in HSI classifica-39 

tion problems [1]. Traditional classifiers such as Maximum Likelihood and Spectral Angle 40 

Mapper cannot handle HSI data with high classification accuracy due to these problems. 41 

In the last three decades, various studies have been conducted to apply the high clas-42 

sification success of Machine Learning (ML) methods to HSI classification problems. 43 

Gualtieri et al. [2] applied the SVM model with ad-hoc kernel to Indian Pines (IP) and 44 
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Salinas Scene (SS) data sets and gained 87.3% and 98.6% overall accuracy (OA) respec-1 

tively. Chan & Paelinckx [3] compared tree-based Random Forest and Adaboost algo-2 

rithms on a HSI obtained with HyMap sensor. The result of this study showed that Ada-3 

boost showed slightly better OA while Random Forest requires less processing time. In 4 

recent years, Convolutional Neural Network (CNN) algorithms that have become more 5 

widespread on various application fields, has been used in the HSI classification. Luo et 6 

al. [4] proposed HSI-CNN and HSI-CNN+XGBoost architectures to HSI data sets. Experi-7 

mental results with common HSI benchmark data sets showed that proposed methods 8 

provided more than 99% of OA. Roy et al. [5] proposed the HybridSN architecture that 9 

both spatial-spectral and spatial feature extraction capability from HSIs. The architecture 10 

provides over 99% of OA on various benchmark data sets. Nevertheless, the HyRANK 11 

data set hardly ever used as a benchmark in studies in the literature despite IP and SS 12 

datasets are commonly used in studies. 13 

In this study, classification performance of SVM and CNN algorithms were evalu-14 

ated. For this purpose, two publicly available HSI data sets, namely SS and HyRANK 15 

Loukia (HL), were used. The data sets contain various land classes related to agriculture 16 

and forestry. In the data preparation stage, Principal Component Analysis (PCA) was ap-17 

plied to both data sets to reduce band numbers and avoid high dimensionality of HSI. 18 

There are 150 training samples were selected almost every class from both data sets to 19 

simulate a limited train sample scenario. After performing the classification models into 20 

HSIs, classification performances of the algorithms were evaluated by examining OA, pro-21 

ducer accuracy (PA), user accuracy (UA), f scores, and kappa coefficient (κ) respectively. 22 

2. Classification Methods 23 

2.1. Support Vector Machines (SVM) 24 

SVM is a supervised and non-parametric ML algorithm based on statistical learning 25 

theory, developed by Vapnik [6]. There are no assumptions about data distribution. In 26 

binary classification problems that classes can be separated linearly, classes can be sepa-27 

rate with infinite number of linear decision boundaries. The main approach of SVM is to 28 

find the best decision boundary that minimizes generalization error, called as optimum 29 

hyperplane [7, 8]. Data samples that are closest to the hyperplane were used to measure 30 

the margin, called as support vectors (SV) [7]. Because of considering only SVs, SVM can 31 

be useful with limited training sets, where collecting training data is costly in terms of 32 

both time and resources [9, 10]. In most classification problems, such as remotely sensed 33 

images, classes cannot be separated by linear hyperplanes. To overcome of this situation, 34 

kernel functions are used to transform the to a larger feature space. Commonly used ker-35 

nels are linear, sigmoid, polynomial, and radial basis function (RBF) [11]. However, the 36 

RBF kernel outperforms on most classification problems [11, 12]. Therefore, the RBF was 37 

used in this study when implementing the SVM model, by determining C and γ parame-38 

ters with the grid search algorithm.  39 

2.2. Convolutional Neural Networks (CNNs) 40 

CNN is a form of deep learning that processes data in the form of multiple arrays 41 

such as, 1- dimensional data including sequences and signals, 2-dimensional data includ-42 

ing images and audio spectrograms, 3-dimensional data including volumetric images and 43 

videos [13]. CNNs are generally formed of three fundamental components with serves 44 

different purposes, named as convolution layer, pooling layer and fully connected layer. 45 

In the convolution layer, various kernels are utilized the entire input data (tensors) and 46 

feature maps are created [14]. Subsequently, feature maps put into an activation function 47 

to generate output feature maps, such as ReLU. A pooling layer is applied the convolution 48 

layers in most CNN models in order to reduce the dimensionality of output feature maps. 49 

Third and last type of layer is the fully connected layer, where neurons are fully connected 50 

to all neurons in the previous layer, as in a regular artificial neural network [15]. Following 51 

that, this layer is connected to a classifier, such as Softmax, and classification is performed. 52 
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In this study, a hybrid CNN model is used to classify HSIs which can be able to ex-1 

tract spectral and spatial features along bands using 3D and 2D convolution operations. 2 

To avoid spectral redundancy of HSI, PCA transformation is applied along bands and the 3 

first 15 principal components are used. The model contains two 3D convolution layers 4 

and one 2D convolution layer respectively. The 2D convolution operation can extract only 5 

spatial features of input data. In the 3D convolution operation, spectral and spatial learn-6 

ing is performed simultaneously. PReLU activation function is selected for its advantages 7 

over ReLU [16]. All weights are randomly initialized and trained using back-propagation 8 

algorithm with the Adam optimizer by using the softmax classifier. Epoch and batch size 9 

parameters are detected as 256 and 500 respectively. The summary of CNN model is given 10 

at Table 1. 11 

Table 1. Summary of the CNN model. 12 

Layer Type 

SS data set HL data set 

Output shape 
# of learnable 

parameters 
Output shape 

# of learnable 

parameters 

1 Input (None,7,7,15,1) 0 (None,7,7,15,1) 0 

2 3D convolution (None,5,5,9,8) 2 312 (None,5,5,9,8) 2 312 

3 3D convolution (None,3,3,5,16) 6 496 (None,3,3,5,16) 6 496 

4 Reshape (None,3,3,80) 0 (None,3,3,80) 0 

5 2D convolution (None,1,1,64) 46 208 (None,1,1,64) 46 208 

6 Flatten (None,64) 0 (None,64) 0 

7 Dense (None,256) 16 896 (None,256) 16 896 

8 Dropout (40%) (None,256) 0 (None,256) 0 

9 Dense (None,128) 33 024 (None,128) 33 024 

10 Dropout (40%) (None,128) 0 (None,128) 0 

11 Dense (None,16) 2 064 (None,14) 1806 

Total number of learnable parameters: 107 000  106 742 

 13 

14 
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3. Experiments 1 

3.1. Dataset Description 2 

SS data was acquired on 9th October by AVIRIS sensor with a 3.7-meter spatial reso-3 

lution and 224 bands. To train the algorithms, 150 samples were selected randomly from 4 

each class. Numbers of training and testing samples were given in Table 2. Final size of 5 

hypercube is 512×217×204. The image composition and ground truth of SS were given in 6 

Figure 1.  7 

  

 
(c) 

 
(d) (a) (b) 

 8 

Figure 1. True color and labeled views of HSIs: (a) RGB composite and (b) ground truth of the SS 9 

with legend, and (c) RGB composite and (d) ground truth of the HL. 10 

HyRANK data set is developed by scientific initiative of the ISPRS, WG III/4 [17]. The 11 

data was obtained from EO-1 Hyperion sensor with 30 m spatial resolution and 220 bands. 12 

Only the Loukia (HL) data was considered in this study, while HyRANK contains 5 HSI 13 

data. Ground Truth of HL contains 14 ground classes. The size of HL is 250×1376×176. The 14 

image composition and ground truth of HL was given in Figure 1. Since the 2nd and 4th 15 

classes have limited samples on the HL, 150 samples were chosen randomly from all clas-16 

ses except the aforementioned classes equally to train the algorithms. There are 30 samples 17 

were chosen from 2nd and 4th classes. Numbers of training and testing samples for HL 18 

were given in Table 2. 19 

Table 2. Number of samples of the SS and HL datasets. 20 

 SS data set HL data set 

# Class Name Train Test Class Name Train Test 

1 Brocoli_green_weeds_1 150 1859 Dense urban fabric 150 138 

2 Brocoli_green_weeds_2 150 3576 Mineral extraction sites 30 37 

3 Fallow 150 1826 Non irrigated arable land 150 392 

4 Fallow_rough_plow 150 1244 Fruit trees 30 49 

5 Fallow_smooth 150 2528 Olive groves 150 1251 

6 Stubble 150 3809 Broad leaved forest 150 73 

7 Celery 150 3429 Coniferous forest 150 350 

8 Grapes_untrained 150 11121 Mixed forest 150 922 

9 Soil_vinyard_develop 150 6053 Dense sclerophyllous vegetation 150 3643 

10 Corn_senesced_green_weeds 150 3128 Sparce sclerophyllous vegetation 150 2653 

11 Lettuce_romaine_4wk 150 918 Sparsely vegetated areas 150 254 

12 Lettuce_romaine_5wk 150 1777 Rocks and sand 150 337 

13 Lettuce_romaine_6wk 150 766 Water 150 1243 
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14 Lettuce_romaine_7wk 150 920 Coastal water 150 301 

15 Vinyard_untrained 150 7118    

16 Vinyard_vertical_trellis 150 1657    

 1 

3.2. Experimental Results 2 

The classification models were built by using Python’s Tensorflow [18] and Scikit-3 

learn [19] libraries. The best C and γ parameters were determined for both datasets as 100 4 

and 0.1 respectively with grid search. To compare the classification performances of the 5 

algorithms, OA, PA, UA, f scores, and κ were calculated. Accuracy metrics for data sets 6 

were given in Table 3. As can be seen from OA and κ accuracy metrics in the table, the 7 

CNN outperformed against SVM on both data sets. For the SS data set, the CNN showed 8 

slightly better performance from SVM on 3rd, 4th, 5th, and 10th classes. Yet, the CNN’s PA, 9 

UA and f score values for the 8th and 15th classes are significantly higher than SVM’s. The 10 

SVM only showed slightly better performance according to PA on 16th class, where is 0.01 11 

higher than CNN’s. When comparing processing times, it is clear that CNN is faster be-12 

cause the SVM parameter tuning process is included in the training time.  13 

Figure 2.a and Figure 2.b shows the classification maps for SS data set. Some pixels 14 

of the parcel on the upper-left of the image labeled as Fallow_rough_plow class on the 15 

ground truth data were misclassified by both classification algorithms. Other considerable 16 

misclassification is, upper-right parcel where was classified as Vinyard_vertical_trellis by 17 

CNN was classified by SVM as Lettuce_romaine_6wk and Vinyard_vertical_trellis, where 18 

has any ground truth data. 19 

For the HL data set, the CNN showed better classification performance in almost 20 

every class by evaluating OA and κ metrics. In 2nd, 10th, and 15th classes, SVM's PA values 21 

are slightly higher than CNN's PA’ values. Also, 12th class showed better classification 22 

performance on the SVM. PA of 1st, 6th, and 7th classes obtained a low value in the range 23 

from 0.16 to 0.62 for both classification algorithms, indicating that classification perfor-24 

mance is considerably worse than other classes. Reason of misclassification of the afore-25 

mentioned classes could be that boundary limits for these classes on feature space cannot 26 

be defined properly. Moreover, low spatial resolution of the spaceborne HSI causes mixed 27 

pixel problem. Considering the training time of the algorithms, the SVM was outper-28 

formed against CNN.  29 

Figure 2.c and Figure 2.d shows the classification maps for HL data set. It can be seen 30 

from Figure 2.d that some pixels are misclassified on the sea along the line where Coastal 31 

water and Water classes were jointed. On the other hand, visually analysis of the result is 32 

harder than the other data set since the ground data was not collected with larger region 33 

of interests from wide areas. 34 

Table 3. The performance analysis of classification algorithms. 35 

Class 

ID 

SS data set HL data set 

SVM CNN SVM CNN 

PA UA f score PA UA f score PA UA f score PA UA f score 

1 1.00 1.00 1.00 1.00 1.00 1.00 0.47 0.88 0.61 0.62 0.97 0.76 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.91 0.97 1.00 0.99 

3 0.97 0.98 0.98 0.99 1.00 0.99 0.79 0.88 0.83 0.85 0.91 0.88 

4 0.98 0.99 0.99 0.99 1.00 0.99 0.70 0.57 0.63 0.79 0.86 0.82 

5 0.98 0.98 0.98 0.99 0.99 0.99 0.92 0.89 0.90 0.97 0.93 0.95 

6 1.00 1.00 1.00 1.00 1.00 1.00 0.16 0.82 0.27 0.20 0.99 0.34 

7 1.00 1.00 1.00 1.00 1.00 1.00 0.45 0.84 0.59 0.56 0.86 0.68 

8 0.83 0.79 0.81 0.92 0.88 0.90 0.49 0.69 0.58 0.70 0.83 0.75 

9 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.56 0.67 0.85 0.64 0.73 

10 0.96 0.97 0.97 0.97 0.99 0.98 0.80 0.80 0.80 0.79 0.81 0.80 
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11 0.94 0.99 0.97 0.99 1.00 1.00 0.67 0.96 0.79 0.81 0.99 0.89 

12 0.99 1.00 0.99 1.00 1.00 1.00 0.88 0.95 0.92 0.83 0.96 0.89 

13 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

14 0.96 0.99 0.97 0.99 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 

15 0.70 0.74 0.72 0.84 0.88 0.86       

16 0.99 1.00 0.99 0.98 1.00 0.99       

OA 91.36 95.68 76.37 81.38 

κ 90.36 95.17 72.05 77.77 

time (s) 31.72 28.85 21.10 23.16 

 1 

 2 

  

 
 (c) 

 
(d) 

(a) (b) 

Figure 2. The classification maps for the SS dataset using (a) SVM and (b) CNN, and for the HL 3 

dataset using (c) SVM and (d) CNN respectively. 4 

4. Conclusions 5 

In this study, the classification of HSI datasets was evaluated with SVM and CNN 6 

algorithms. For this purpose, two publicly available datasets that include agricultural and 7 

forestry classes were evaluated. The experimental results given in Table 3 show that the 8 

CNN algorithm outperformed for both HSI data. For the SS data set, CNN showed a better 9 

performance by PA, UA and f scores against the SVM. For HL data set, CNN again gained 10 

better f scores in 10 of 14 land cover classes. Despite the high accuracy of the measured 11 

UA values, PA metrics were calculated very low in the Broad leaved forest and Coniferous 12 

forest classes. The reason of the low accuracy of HL could be the unbalanced ground truth 13 

data that was labeled without field studies and the low spatial resolution of the data pro-14 

vided by spaceborne sensor. However, the classification performance is sufficient despite 15 

the limited training data. Results showed that CNN models are useable on HSI classifica-16 

tion problems that include agricultural and forestry areas. 17 
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