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【Introduction】
In information geometry, a parametric statistical model (a family of probability density functions) is treated as
a differentiable manifold, where the Riemannian metric called Fisher metric and the pair of two torsion-free dual
affine connections called the exponential and mixture connections play essential roles for statistical inference. For
example, the maximum likelihood estimation in an exponential family is understood as the orthogonal projection
of the geodesic defined by the mixture connection. This comes from the fact that an exponential family is a
dually flat space, where the curvature and the torsion tensors of the two dual affine connections are all equal to
zero. Recently, it has been found by the authors that a general estimating function naturally induces a similar
geometric structure on a statistical model, that is, a Riemannian metric and a pair of dual affine connections.
However, one of the affine connections is not necessarily torsion-free, especially when the estimating function
is not integrable with respect to the parameter of the statistical model. In this presentation, we explain this
geometry with some basic knowledge of information geometry.

【Statistical manifold】
In this presentation,we assume that all geometrical objects on differentiable manifolds are smooth (C∞).

Definition 1 (Statistical manifold)

For a Riemannian manifold (M, g) and an affine connection∇ onM , we call (M, g,∇) a statistical manifold
if and only if both of ∇ and its dual connection ∇∗ with respect to g are torsion-free.

Remark

1. The dual connection ∇∗ of ∇ with respect to g is defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ) (∀X, ∀Y, ∀Z ∈ X (M)),

where X (M) is the set of all vector fields on M .

2. For an affine connection ∇ on M , its curvature tensor field R and torsion tensor field T are defined by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, T (X,Y ) := ∇XY −∇YX − [X,Y ]

(∀X, ∀Y, ∀Z ∈ X (M)).

An affine connection ∇ is said to be torsion-free if T = 0. For a torsion-free affine connection ∇, ∇∗ = ∇
implies that ∇ is the Levi-Civita connection with respect to g. when we let R∗ and T ∗ be the curvature and
torsion tensor fields of ∇∗, respectively. R = 0 always implies R∗ = 0, but T = 0 does not necessarily imply
T ∗ = 0. For a statistical manifold (M, g,∇), R = 0 implies that ∇ and ∇∗ are both flat (i.e. T = 0, R = 0
and T ∗ = 0, R∗ = 0). In this case, (M, g,∇,∇∗) is called a dually flat space.

【Contrast function】
For a real-valued function ϕ on the direct productM×M of a manifoldM and vector fieldsX1, ..., Xi, Y1, ..., Yj
on M , the functions ϕ[X1, ..., Xi|Y1, ..., Yj], ϕ[X1, ..., Xi| ] and ϕ[ |Y1, ..., Yj] on M are defined by

ϕ[X1, . . . , Xi|Y1, . . . , Yj](r) := (X1)p · · · (Xi)p(Y1)q · · · (Yj)qϕ(p, q)|p=r,q=r,
ϕ[X1, . . . , Xi| ](r) := (X1)p · · · (Xi)pϕ(p, r)|p=r,
ϕ[ |Y1, . . . , Yj](r) := (Y1)q · · · (Yj)qϕ(r, q)|q=r

for any r ∈M , respectively.

Definition 2 (Contrast function)

A real-valued function ϕ on M ×M is called a contrast function on M if and only if it satisfies

(a) ϕ(p, p) = 0 (∀p ∈M),

(b) ϕ[X| ] = ϕ[ |X ] = 0 (∀X ∈ X (M)),

(c) g(X,Y ) := −ϕ[X|Y ] (∀X, ∀Y ∈ X (M)) is a Riemannian metric on M.

These conditions imply that

ϕ(p, q) ≥ 0, ϕ(p, q) = 0 ⇐⇒ p = q

in some neighborhood of the diagonal set {(r, r)|r ∈ M} in M × M . Although a contrast function is not
necessarily symmetric, this property means that a contrast function measures some discrepancy between two
points onM (at least locally). For a given contrast function ϕ, the two affine connections ∇ and ∇∗ are defined
by

g(∇XY, Z) = −ϕ[XY |Z], g(Y,∇∗
XZ) = −ϕ[Y |XZ] (∀X, ∀Y, ∀Z ∈ X (M)).

In this case, ∇ and ∇∗ are both torsion-free and dual to each other with respect to g. This means that both
of (M, g,∇) and (M, g,∇∗) are statistical manifolds. In particular, (M, g,∇) is called the statistical manifold
induced from the contrast function ϕ.

【Geometry induced from Kullback-Leibler divergence】
Let S = {p(x;θ) | θ = (θ1, ..., θd) ∈ Θ ⊂ Rd} be a regular parametric statistical model, that is, a set of prob-
ability density functions with respect to a dominating measure ν on a sample space Ω, each element of which is
indexed by a parameter vector θ in an open subset Θ of Rd, and which satisfies some regularity conditions.

The Kullback-Leibler divergence of the two density functions p1(x) = p(x;θ1) and p2(x) = p(x;θ2) in
S,

ϕKL(p1, p2) :=

∫
Ω
p2(x) log

p2(x)

p1(x)
ν(dx)

is a contrast function on S. Its induced Riemannian metric and dual affine connectins are called Fisher metric
gF , the exponential connection ∇(e) and mixture connection ∇(m), respectively, which are given as
follows:

gFjk(θ) := gF (∂j, ∂k) = Eθ{sj(x,θ)sk(x,θ)}, Γ
(e)
ij,k(θ) := gF (∇(e)

∂i
∂j, ∂k) = Eθ[{∂isj(x,θ)}sk(x,θ)]

Γ
(m)
ik,j(θ) := gF (∂j,∇

(m)
∂i

∂k) =
∫
Ω s

j(x,θ)∂i∂kp(x;θ)ν(dx)
,

where Eθ indicates that the expectation is taken with respect to p(x;θ), ∂i = ∂
∂θi

and si(x;θ) =

∂i log p(x;θ) (i = 1, . . . , d). In particular, if S is an exponential family, (S, gF ,∇(e),∇(m)) is a dually flat
space. This geometrical structure plays the most fundamental and important role in the differential geometry
of statistical inference. For example, the maximum likelihood estimator in an exponential family is obtained by
the orthogonal projection of the geodesic with respect to the mixture connection ∇(m).

【Statistical manifold admitting torsion】
Definition 3 (Statistical manifold admitting torsion)

For a Riemannian manifold (M, g) and an affine connection∇ onM , we call (M, g,∇) a statistical manifold
admitting torsion (or SMAT for short) if and only if the dual connection ∇∗ of ∇ with respect to g is
torsion-free.

For a SMAT (M, g,∇), the affine connection ∇ possibly has torsion (i.e. T ̸= 0). Hence, R = 0 does not
necessarily imply that ∇ is flat, but it implies that ∇∗ is flat since R∗ = 0 and T ∗ = 0. In this case, we call
(M, g,∇,∇∗) a partially flat space.

【Pre-contrast function】
For a real-valued function ρ on the direct product TM ×M of a manifold M and its tangent bundle TM , and
vector fieldsX1, ..., Xi, Y1, ..., Yj, Z on M , the function ρ[X1, ..., XiZ|Y1, ..., Yj] on M is defined by

ρ[X1, . . . , XiZ|Y1, . . . , Yj](r) := (X1)p · · · (Xi)p(Y1)q · · · (Yj)qρ(Zp, q)|p=r,q=r (∀r ∈M)

The functions ρ[X1, ..., XiZ| ] and ρ[ |Y1, ..., Yj] are also defined in the same way as above.

Definition 4 (Pre-contrast function)

A real-valued function ρ on TM ×M is called a pre-contrast function on M if and only if it satisfies

(a) ρ(f1X1 + f2X2, q) = f1ρ(X1, q) + f2ρ(X2, q)

(∀f1,∀f2 ∈ C∞(M), ∀X1,∀X2 ∈ X (M), ∀q ∈M).

(b) ρ[X| ] = 0 (∀X ∈ X (M))
(
i .e. ρ(Xp, p) = 0 (∀p ∈M)

)
.

(c) g(X,Y ) := −ρ[X|Y ] (∀X, ∀Y ∈ X (M)) is a Riemannian metric on M.

For a given pre-contrast function ρ, two affine connections ∇ and ∇∗ are defined by

g(∇XY, Z) = −ρ[XY |Z], g(Y,∇∗
XZ) = −ρ[Y |XZ] (∀X, ∀Y, ∀Z ∈ X (M)).

In this case, ∇ and ∇∗ are dual to each other with respect to g and ∇∗ is torsion-free. However, the affine
connection ∇ possibly has torsion. This means that (M, g,∇) is a SMAT and it is called the SMAT induced
from the pre-contrast function ρ.

For any contrast function ϕ on M , the function ρϕ, which is defined by

ρϕ(Xp, q) := Xpϕ(p, q) (∀p,∀q ∈M, ∀Xp ∈ Tp(M)),

is a pre-contrast function on M . The notion of pre-contrast function is obtained by taking the fundamental
properties of the first derivative of a contrast function as axioms.

【Geometry induced from estimating functions】
Let S = {p(x;θ) | θ = (θ1, ..., θd) ∈ Θ ⊂ Rd} be a regular parametric statistical model. An estimating
function on S, which we consider here, is a Rd-valued function u(x,θ) satisfying

Eθ{u(x,θ)} = 0, Eθ{∥u(x,θ)∥2} <∞, det

[
Eθ

{
∂u

∂θ
(x,θ)

}]
̸= 0 (∀θ ∈ Θ).

For an estimating function u(X,θ) and a random sampleX1, . . . , Xn from an unknown probability distribution
p(x;θ0) in S, an M-estimator θ̂ for θ0 is obtained as a solution to the estimating equation

n∑
i=1

u(Xi,θ) = 0.

The M-estimator θ̂ has the consistency and asymptotic normality

θ̂ −→ θ0 (in probability),
√
n(θ̂ − θ0) −→ N

(
0,Avar

(
θ̂
))

(in distribution)

as n→ ∞ under some additional regularity conditions.
The matrix Avar(θ̂) is the asymptotic variance-covariance matrix of θ̂ and is given by

Avar(θ̂) = {A(θ0)}−1B(θ0){A(θ0)−1}T = {G(θ0)}−1,

where A(θ) := Eθ {(∂u/∂θ)(x,θ)}, B(θ) := Eθ

{
u(x,θ)u(x,θ)T

}
and G(θ) is the asymptotic variance-

covariance matrix of the standardized estimating function u∗(x,θ) of u(X,θ), which is defined by

u∗(x,θ) := Eθ

{
s(x,θ)u(x,θ)T

}[
Eθ

{
u(x,θ)u(x,θ)T

}]−1
u(x,θ),

where s(x,θ) := (∂/∂θ) log p(x;θ) is the score function for θ. Geometrically, the i-th component of the stan-
dardized estimating function u∗(x,θ) is the orthogonal projection of the i-th component of the score function
s(x,θ) onto the linear space spanned by all components of the estimating function u(x,θ) in the Hilbert space

Hθ := {a(x) | Eθ{a(x)} = 0, Eθ{a(x)2} <∞}

with the inner product < a(x), b(x) >θ:= Eθ{a(x)b(x)} (∀a(x),∀b(x) ∈ Hθ). The matrix G(θ) is called a
Godambe information matrix, which can be seen as a generalization of the Fisher information matrix.

Since the Kullback-Leibler divergence ϕKL is a contrast function on S, we obtain a pre-contrast function ρKL
on S from the first derivative of ϕKL:

ρKL((∂j)p1, p2) := (∂j)p1ϕKL(p1, p2) = −
∫
Ω
sj(x,θ1)p(x;θ2)ν(dx) (j = 1, . . . , d)

for any two probability distributions p1(x) = p(x;θ1) and p2(x) = p(x;θ2) in S. This observation leads to the
following proposition.

Proposition (Pre-contrast function associated with an estimating function)

For an estimating function u(x,θ) on the parametric model S, a pre-contrast function ρu : TS × S → R
is defined by

ρu((∂j)p1, p2) := −
∫
Ω
u
j
∗(x,θ1)p(x;θ2)ν(dx) (j = 1, . . . , d)

for any two probability distributions p1(x) = p(x;θ1) and p2(x) = p(x;θ2) in S, where u
j
∗(x,θ) is the j-th

component of the standardized estimating function u∗(x,θ) of u(x,θ).

The use of u∗(x,θ) instead of u(x,θ) ensures that the definition of the function ρu does not depend on the
choice of coordinate system (parameter) of S.

The proof of Proposition is straightforward. In particular, the condition (b) in the definition of pre-contrast
function follows from the unbiasedness of the (standardized) estimating function. The Riemannian metric g,
dual connections ∇ and ∇∗ induced from the pre-contrast function ρu are given as follows:

gjk(θ) := g(∂j, ∂k) = Eθ{uj∗(x,θ)uk∗(x,θ)} = Gjk(θ),{
Γij,k(θ) := g(∇∂i∂j, ∂k) = Eθ[{∂iu

j
∗(x,θ)}sk(x,θ)]

Γ∗ik,j(θ) := g(∂j,∇∗
∂i
∂k) =

∫
Ω u

j
∗(x,θ)∂i∂kp(x;θ)ν(dx)

,

where Gjk(θ) is the (j, k) component of the Godambe information matrix G(θ). Note that∇∗ is always torsion-
free since Γ∗ik,j = Γ∗ki,j, whereas ∇ is not necessarily torsion-free unless u∗(x,θ) is integrable with respect to θ

(i.e. there exists a function ψ(x,θ) satisfying ∂jψ(x,θ) = u
j
∗(x,θ) (j = 1, . . . , d)).
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