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A g-Gaussian distribution is a generalization of Gaussian distributions.
For a fixed q € [1,3), the set of all g-Gaussian distributions admits infor-
mation geometric structures such as an entropy, a divergence and a Fisher
metric via escort expectations. The ordinary expectation of a random vari-
able is the integral of the random variable with respect to its probability
distribution. Escort expectations admit us to replace the law to any other
distributions. A choice of escort expectations on the set of all g-(GGaussian
distributions determines an entropy and a divergence. The g-escort ex-
pectation is one of most important expectations since this determines the
Tsallis entropy and the a-divergence.

The phenomenon gauge freedom of entropies is that different escort
expectations determine the same entropy, but different divergences.

In this presentation, we first introduce a refinement of the g-logarithmic
function. Then we demonstrate the phenomenon on an open set of all g-
(Gaussian distributions by using the refined g-logarithmic functions. We
write down the corresponding Riemannian metric.

1 g-Logarithmic functions and their refinements

For q € R, we set xq4(s) := s9. The g-logarithmic function is defined by

Ing () := /1 qu(s) ds.

The inverse function of In, is called the g-exponential function.

(1) For g = 1, we have that

In;(t) = log(t) for t € (0, 00),
exp,(7) = exp(T). for 7 € R.
(2) For g # 1, we have that
t'—1 —1
Ing(t) = ¢ for t € (0, c0),

exp,(7) = {1+ (1 — q)T}lqu for 7 € Ing, (0, 00).

2 Escort expectations

The escort expectation of f € L' (v) with respect to v on Q is defined by

E,[f] i= /Q f(w)dv(w). 2)

Let & be a manifold of positive probability densities on a measure space
(2,m). Take T € (0, 00] such that T' > sup{p(w) | pE€ S, w € Q}.

Let £: (0,T) — R be a differentiable function such that £' > 0 in (0, T).
For p € S§, we define a measure vy, on {2 as the absolutely continuous
measure with respect to m with Radon—Nikodym derivative

dl/g; 1
Z(w) = — :
dm ¢ (p(w))
We remark that, in the case £ = log, the escort expectation (2) is nothing
but the ordinary expectation.

3 (Gauge freedom of Entropies

A choice of differentiable functions £ determines an entropy and a relative
entropy on &. The phenomenon gauge freedom of entropies is that differ-
ent escort expectations determine the same entropy, but different relative
entropies. In this section, we demonstrate gauge freedom of entropies on
the set of g-Gaussian distributions over R for 1 < g < 3.

-Gaussian distribution
4 ? N

For 1 < g<3and £ = (p,0) € R X (0,0), the g-Gaussian measure
with location parameter pu and scale parameter o on R is

Pq(x; &) = pe(w; p, o) 1= Zia exp, (—3 i . <w ; “) > .

We call pg(x; &) = pqe(x; 1, o) the g-Gaussian distribution with location

e Refined deformation function ~N
For g € R and a € R\ {0}, define a function xg4,. : (0,1) — (0,00) by

Xa.a(8) 1= Xaq(8) - (—1Ing(s))" %
- /

e Refined logarithm, Refined exponential ~N

We can then define the a-refined g-logarithmic function In, , and the
a-refined g-exponential function exp, , by

1 a
Ing,q(t) := _E( — Ing(¢))", for t € (0,1),
exp, .(7) = exp, (— (—(1,7')%) ; for 7 € Ing,6(0,1). (1)
\_ J
Lemma 1.1 Let q € R and a € R\ {0}. For 7 € Ing,4.(0,1), we have that
d" (1 ) n—1 :
_ (n—1)(g—1)+ e n ~a
dTm eXPQ,a(T) — eXana(T) ! q(_a’T) 2) bj (qa (1,) ) (_aT) ’
J:
where {b7 = b} (q,a) }neno<j<n—1 Satisfies
b(l) =1,
{na(g —1) +1}bo if j = 0,
b7 ™" = { {(na+j)(g —1) +1}b} — {n(1 —a) — (j — V)}bj_y ifj # 0,m,

(na — 1)b;,_4 if 7 = n.

Remark 1.2 For q € R and a € R\ {0}, we have that
bo =1, bg=a(g—1)+1, bo={2a(q—1)+1}{a(q—1)+1},

bi =a —1, b; = (a —1){(4a +1)(qg — 1) + 3},
by = (a — 1)(2a — 1).

Corollary 1.3 For a € R\ {0} and n € N, then by(1,a) = 1.

Corollary 1.4 Let g € R and n € N. For 1 < j < n, then b;(q,1) = 0.

s (Gauge freedom of entropies ~
Theorem 1 Let 1 < q< 3 and a € R\ {0}. Then

Entq,]_ — aEntq,a,

DY £ AD@Y 4., #£ Adg.a fora #1 and X\ € R.

parameter p and scale parameter o.

\- J
Set X, = {0 >0 | 1/(Zq0) < 1}. For1 < q < 3, a € R\ {0} and
£ € R X 3,, we define a measure vq,q;¢ on R by

dVQaG';g 1
xT) 1= :
dz = g, (pa(@:€))
Take £ € R X ¥, and set p = pq(-;€) € S5.
(1) The (q,a)-cross entropy of p with respect to »r € S, is defined by

dg,a(PsT) = —Euy 4 [INg,a(T)].
(2) The (q, a)-entropy of p is defined by
Entg,qa(p) := dg,a(p, P)-
(3) The (q,a)-relative entropy of p with respect to r € S, is defined by
D" (p,r) := —dg,a(P,P) + dg,a(p; 7).

Remark 3.1 The (q,1)-entropy coincides with the Boltzmann—Shannon en-
tropy ¢f g = 1, and the Tsallis entropy otherw:ise.

- _/

4 Refined Riemannian metrics
For 1< qg< 3, a€eR\ {0}, set

1 —
2ig,a 1= {a' € 34 } Zqo > exp, <max {O, 7 a}> } .

Sg,a i = {Pq(38) €ESqg | § ER X Xga}.
Theorem 2 For £ € R X X4, and s, t € {pu,0},

(ga) (O O L)) . o(3:0)
9" (oo or ) Pal3€) = g7 (©

g €)= [ o Ing Ba(@5©) - 57 g (pa(@5€))

X eXP;,,a (Ing,a (Pq(x;€))) dx.

determaines a Riemannian metric on Sg,q.

We compute the exact values:

(3 —4q)2 32;:) (qu)zbz—q)gz [R (m — ”)2 Z(Ji(z(i)i;_); da

4 ! b2
— ‘7 ..
- (3 . q)2 JEZO: (ZqO')z(l_q)O'Z @(q7 27 17.77 5)9

(g,a) _ - b? o (CB — “)2 2 pq(x; €)%
O = X Gyioo /{1 o } (—tal, €))7

2 2
b;

— ZO (ZqO-)Z(l—q)o.z Z (Z) (_1)kq)(q729k9j§€)7

k=0

giL™ (&)

for £ € R X 3,60, where we set

<fL‘ — u)”“ pq(x;€) TV DF
o (_EQ(ma 5))‘7
Proposition 4.1 Fora =1 and £ = (u,0) € R X 3,4, we have that

1 1 1
g (©) = 5, 9B (O ="

®(q,n,k,j;§) := /

R

3—gq

This implies that (Sq4,4,9(%") is a space of constant curvature.
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