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A q-Gaussian distribution is a generalization of Gaussian distributions.
For a fixed q ∈ [1, 3), the set of all q-Gaussian distributions admits infor-
mation geometric structures such as an entropy, a divergence and a Fisher
metric via escort expectations. The ordinary expectation of a random vari-
able is the integral of the random variable with respect to its probability
distribution. Escort expectations admit us to replace the law to any other
distributions. A choice of escort expectations on the set of all q-Gaussian
distributions determines an entropy and a divergence. The q-escort ex-
pectation is one of most important expectations since this determines the
Tsallis entropy and the α-divergence.

The phenomenon gauge freedom of entropies is that different escort
expectations determine the same entropy, but different divergences.

In this presentation, we first introduce a refinement of the q-logarithmic
function. Then we demonstrate the phenomenon on an open set of all q-
Gaussian distributions by using the refined q-logarithmic functions. We
write down the corresponding Riemannian metric.

1 q-Logarithmic functions and their refinements

For q ∈ R, we set χq(s) := sq. The q-logarithmic function is defined by

lnq(t) :=

∫ t

1

1

χq(s)
ds.

The inverse function of lnq is called the q-exponential function.

(1) For q = 1, we have that

ln1(t) = log(t) for t ∈ (0,∞),

exp1(τ) = exp(τ). for τ ∈ R.

(2) For q �= 1, we have that

lnq(t) =
t1−q − 1

1 − q
for t ∈ (0,∞),

expq(τ) = {1 + (1 − q)τ} 1
1−q for τ ∈ lnq(0,∞).

Refined deformation function� �
For q ∈ R and a ∈ R \ {0}, define a function χq,a : (0, 1) → (0,∞) by

χq,a(s) := χq(s) · (− lnq(s))
1−a.

� �
Refined logarithm, Refined exponential� �

We can then define the a-refined q-logarithmic function lnq,a and the
a-refined q-exponential function expq,a by

lnq,a(t) := −1

a

( − lnq(t)
)a

, for t ∈ (0, 1),

expq,a(τ) = expq

(
− (−aτ)

1
a

)
, for τ ∈ lnq,a(0, 1). (1)

� �
Lemma 1.1 Let q ∈ R and a ∈ R \ {0}. For τ ∈ lnq,a(0, 1), we have that

dn

dτn
expq,a(τ) = expq,a(τ)

(n−1)(q−1)+q(−aτ)
n(1−a)

a

n−1∑
j=0

bnj (q, a) · (−aτ)−
j
a ,

where {bnj = bnj (q, a)}n∈N,0≤j≤n−1 satisfies

b10 = 1,

bn+1
j =

⎧⎪⎨
⎪⎩
{na(q − 1) + 1}bn0 if j = 0,

{(na + j)(q − 1) + 1}bnj − {n(1 − a) − (j − 1)}bnj−1 if j �= 0, n,

(na − 1)bnn−1 if j = n.

Remark 1.2 For q ∈ R and a ∈ R \ {0}, we have that

b10 = 1, b20 = a(q − 1) + 1, b30 = {2a(q − 1) + 1}{a(q − 1) + 1},
b21 = a − 1, b31 = (a − 1){(4a + 1)(q − 1) + 3},

b32 = (a − 1)(2a − 1).

Corollary 1.3 For a ∈ R \ {0} and n ∈ N, then bn0 (1, a) = 1.

Corollary 1.4 Let q ∈ R and n ∈ N. For 1 ≤ j < n, then bnj (q, 1) = 0.

2 Escort expectations

The escort expectation of f ∈ L1(ν) with respect to ν on Ω is defined by

Eν [f ] :=

∫
Ω

f(ω)dν(ω). (2)

Let S be a manifold of positive probability densities on a measure space
(Ω,m). Take T ∈ (0,∞] such that T > sup{p(ω) | p ∈ S, ω ∈ Ω}.

Let � : (0, T ) → R be a differentiable function such that �′ > 0 in (0, T ).
For p ∈ S, we define a measure ν�;p on Ω as the absolutely continuous
measure with respect to m with Radon–Nikodym derivative

dν�;p

dm
(ω) :=

1

�′(p(ω))
.

We remark that, in the case � = log, the escort expectation (2) is nothing
but the ordinary expectation.

3 Gauge freedom of Entropies

A choice of differentiable functions � determines an entropy and a relative
entropy on S. The phenomenon gauge freedom of entropies is that differ-
ent escort expectations determine the same entropy, but different relative
entropies. In this section, we demonstrate gauge freedom of entropies on
the set of q-Gaussian distributions over R for 1 ≤ q < 3.

q-Gaussian distribution� �
For 1 ≤ q < 3 and ξ = (μ, σ) ∈ R × (0,∞), the q-Gaussian measure
with location parameter μ and scale parameter σ on R is

pq(x; ξ) = pq(x;μ, σ) :=
1

Zqσ
expq

(
− 1

3 − q

(
x − μ

σ

)2
)

.

We call pq(x; ξ) = pq(x;μ, σ) the q-Gaussian distribution with location
parameter μ and scale parameter σ.

� �
Set Σq = {σ > 0 | 1/(Zqσ) < 1}. For 1 ≤ q < 3, a ∈ R \ {0} and

ξ ∈ R × Σq, we define a measure νq,a;ξ on R by

dνq,a;ξ

dx
(x) :=

1

ln′
q,a (pq(x; ξ))

.

Take ξ ∈ R × Σq and set p = pq(·; ξ) ∈ Sq.

(1) The (q, a)-cross entropy of p with respect to r ∈ Sq is defined by

dq,a(p, r) := −Eνq,a;ξ [lnq,a(r)].

(2) The (q, a)-entropy of p is defined by

Entq,a(p) := dq,a(p, p).

(3) The (q, a)-relative entropy of p with respect to r ∈ Sq is defined by

D(q,a)(p, r) := −dq,a(p, p) + dq,a(p, r).

Remark 3.1 The (q, 1)-entropy coincides with the Boltzmann–Shannon en-
tropy if q = 1, and the Tsallis entropy otherwise.

Gauge freedom of entropies� �
Theorem 1 Let 1 ≤ q < 3 and a ∈ R \ {0}. Then

Entq,1 = aEntq,a,

D(q,1) �= λD(q,a), dq,1 �= λdq,a for a �= 1 and λ ∈ R.

� �

4 Refined Riemannian metrics

For 1 ≤ q < 3, a ∈ R \ {0}, set
Σq,a :=

{
σ ∈ Σq

∣∣ Zqσ > expq

(
max

{
0,

1 − a

q

})}
,

Sq,a := {pq(·; ξ) ∈ Sq | ξ ∈ R × Σq,a} .

Theorem 2 For ξ ∈ R × Σq,a and s, t ∈ {μ, σ},

g(q,a)

(
∂

∂s
,
∂

∂t

)
(pq(·; ξ)) := g

(q,a)
st (ξ)

g
(q,a)
st (ξ) :=

∫
R

∂

∂s
lnq,a (pq(x; ξ)) · ∂

∂t
lnq,a (pq(x; ξ))

× exp′′
q,a (lnq,a (pq(x; ξ))) dx.

determines a Riemannian metric on Sq,a.

We compute the exact values:

g(q,a)
μμ (ξ) =

4

(3 − q)2

1∑
j=0

b2j
(Zqσ)2(1−q)σ2

∫
R

(
x − μ

σ

)2
pq(x; ξ)

2q−1

(−�q(x, ξ))
j
dx

=
4

(3 − q)2

1∑
j=0

b2j
(Zqσ)2(1−q)σ2

Φ(q, 2, 1, j; ξ),

g(q,a)
σσ (ξ) =

1∑
j=0

b2j
(Zqσ)2(1−q)σ2

∫
R

{
1 −

(
x − μ

σ

)2
}2

pq(x; ξ)
2q−1

(−�q(x, ξ))
j
dx

=
1∑

j=0

b2j
(Zqσ)2(1−q)σ2

2∑
k=0

(
2

k

)
(−1)kΦ(q, 2, k, j; ξ),

for ξ ∈ R × Σq,a, where we set

Φ(q, n, k, j; ξ) :=

∫
R

(
x − μ

σ

)2k
pq(x; ξ)

(n−1)(q−1)+q

(−�q(x, ξ))
j

dx.

Proposition 4.1 For a = 1 and ξ = (μ, σ) ∈ R × Σq,a, we have that

g(q,1)
μμ (ξ) =

1

σ2
, g(q,1)

σσ (ξ) =
3 − q

σ2
.

This implies that (Sq,a, g
(q,1)) is a space of constant curvature.
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