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Introduction: A wide class of entropies can be used in the MEP

I Jos Uffink [1], generalizing the Shore and Johnson’s axioms, proved that the
functionals which are suitable to be used in the Maximum Entropy Principle
(MEP) belong to a one-parameter family, which the Shannon entropy is a
member of.

I Such functionals are monotonically increasing functions f of

Uq(P) =
(∑

G

pq(G )
)1/(1−q)

I For q −→ 1, Uq(P) −→ Shannon entropy
I P. Jizba and J. Korbel discussed [2] that this generalized approach is

suitable to study systems which do not respect standard hypothesis such as
ergodicity, short-range interactions or exponential growth of the sample
space: the resulting probability distributions take into account correlations
that may not have been observed.

I Rényi entropy
SR(P; q) = log Uq(P)

I Constraint choice: mean vs normalized q-mean

〈C〉q =
∑
G

C (G )pq(G )∑
G pq(G )

Methods: Maximum entropy and maximum likelihood

I Constrained maximization of entropy through Lagrange multiplier technique.
I Parameter estimation through Maximum likelihood estimator: maximize

the joint probability of the data in order to fix the parameters.
I Compare results for both constraint choices.

Mathematical formulation: Mean vs q-mean constraints

I Constrained maximization
.

max
P

[
SR(P; q)− α′

(∑
G

p(G )− 1
)
− θ′

(
〈C〉−C∗

)]
.

max
P

[
SR(P; q)− α

(∑
G

p(G )− 1
)
− θ

(
〈C〉q − C∗

)]
I Solutions
.

p(G ) =
1

Z ′
(1− (q − 1) θ̂′ C (G ))

1
q−1

.

p(G ) =
1

Z
(1− (1− q) θ̂ C (G ))

1
1−q

I Maximum likelihood
. ∑

G

C (G )p2−q(G | θ̂′ML) =
∑
G

C (G )p1−q(G | θ̂′ML)freq(G )

. ∑
G

C (G )pq(G | θ̂ML) =
∑
G

f (G )pq−1(G | θ̂ML)freq(G )

Discussion: Generaized mean is a better constraint in the MEP

I The solutions of the MEP show a power-law behavior: the mean could
diverge, so it could be a bad constraint choice.

I If q is such that the distribution is normalizable, then all its q-moments
converge.

I The q-mean allows us to characterize the power law for every possible value
of the exponent.

I The q-mean, unlike the standard one, makes the Maximum entropy and
Maximum likelihood consistent each other.

I Model selection, i.e. choice of the preferred parameters (q, θ) given the
data, can be performed through the maximum likelihood approach.

Numerical simulations: Explanation

I Data sampled from p(G) in the simple case where C (G ) ∈ [0,+∞) and
g (C ) = 1, for different values of q and θ (q = 1 being the exponential
distribution)

I P(C ) = (2− q)θ(1− (1− q)θC )
1

1−q

I Parameters estimated through maximum likelihood model selection

Numerical results: Parameter estimation

I Number of points sampled N = 105...
I ...for each of three PDFs (r, b, g) with different parameters

Probability density q θ qest θest
(r), 1st moment converge 1.3 7 1.30 6.98
(b), 1st moment diverge 1.8 5 1.80 4.91
(g), exponential PDF 1 10 1.00 9.92

Numerical results: Log-likelihood vs q plot
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Log-likelihood vs q plot. The log-likelihood, for each q, is evaluated in the point
(q, θ) = (q, θ̂ML(q))
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