BATTERY CHARGE AND DISCHARGE STRATEGIES IN TERMS

NIVERSITAT POLITÈCNICA DE CATALUNYA ia de Barcelona Est

OF ENTROPY PRODUCTION

Martí Garcia-Corominas and Angel Cuadras

Energy Processing and Integrated Circuits - Electronic Engineering Dept. Escola d'enginyeria de Barcelona Est – UPC BarcelonaTech

entrop Entropy 2021: The Scientific

Tool of the 21st Century 5 - 7/05/2021

O'Porto - Online

INTRODUCTION

- Electric vehicles (Evs) will be common soon to fight against climate change.
- Several considerations on electric grid performance will have to be taken into account to satisfy security and stability at reasonable economic performance.
- Vehicle batteries have been proposed to be used as energy backups to improve peak shaving of the grid: Vehicle to Grid V2G

> However, battery users could undergo an accelerated degradation of bateries, which would result in an increased cost.

We aim to characterize the relationship between energy and economic efficiency in terms of entropy considering battery ageing and related costs.

METHODOLOGY

We use experimental data of a battery cell and we define a simplified electric model $R_{\rm s} + R_{\rm CT} / / C_{\rm 1}$. Parameter evolution with ageing is available.

Figure 1: Cycling evolution of Rs and RCT for three Li-ion NMC 2,8 Ah cells (LG ICR18650 C2)

Figure 2: Normally, battery charge is carried out at constant current - constant voltage. The change CC-CV takes place at the maximum voltage. We simulate different change points (β) as a function of battery State of Charge (SoC) and compare different charge/discharge ratios and profiles to obtain the best charge/discharge efficiency.

ENERGY, ENTROPY AND ECONOMIC ANALYSIS

Energy

When the battery is operating dissipates heat due to Joule effect and electrochemical reactions Q_{gen} .

This heat:

partially heats up the cell Q_{acum}

is partially delivered to the environament through convection Q_{conv}

Entropy Entropy is computed from heat generation and $dS = \frac{dQ}{dQ}$ battery and environament temperatures

Economic approach: we consider the cost of buying the electric energy from the grid and the cost of selling the stored energy to the grid

Buying	Selling cost							
Energy term [€/kWh]	Power term [€/kW day]	Energy term [€/kWh]						
0.07818987	0.13220231	0.06359318						
Economic efficiency[%] = $\frac{\text{Benefit}_{\text{total}}}{\text{Cost}_{\text{total}}} \cdot 100 =$								
$E_{delivered_{ch}} \cdot Energy cost_{sell} \cdot 100$								

Figure 3: Current, voltage, temperature and entropy due to Q_{acum} typical profiles for a charge process

Figure 4: Energy efficiency and economic efficiency for different β . We find that optimal processes depend on the charge rate, and β .

of β . We find that the optimal charge path is the smoothest one.

	Efficiency [%]						
β (%)	C/2		1C		3C/2		
Escenari	Energy	Economic	Energy	Economic	Energy	Economic	
10	91.873	23.432	90.017	21.370	87.317	18.125	
20	92.105	24.427	89.427	20.569	86.185	16.652	
30	93.263	28.154	90.392	23.785	87.137	18.674	
40	93.940	29.906	90.806	26.185	87.452	19.723	
50	94.275	31.212	90.786	26.471	87.276	19.538	
60	94.520	32.979	90.697	26.185	87.088	19.325	
70	94.720	35.807	90.624	25.901	86.996	19.120	
80	94.795	38.608	90.533	25.537	86.869	18.848	
90	94.780	38.696	90.285	25.041	86.345	18.455	
cc-cv	94.700	33.853	90.531	25.415	86.981	18.949	

We compare the best efficiency in terms of energy and economic performance for different charge rates and β . The best approach does not fit the Standard CC-CV method.

CONCLUSIONS

1) We evaluated V2G in terms of energy, entropy and economy.

2) Entropy plays an interesting role to find the best path to operate batteries.

ACKNOWLEDGEMENTS Project PECT Territori Sostenible

Figure 5: Entropy generation during charge as a function of SoC and