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INTRODUCTION

Cardiovascular and respiratory time series exhibit a variability produced by different

physiological coupled control mechanisms and operate across multiple time scales

that result in the coexistence of short-term dynamics and long-range correlations [1].

In this work we apply a Vector Autoregressive Fractionally Integrated (VARFI)

framework to estimate the Transfer Entropy (TE), in the cardiovascular and

respiratory systems. This allows to quantify the information flow and assess directed

interactions accounting for the simultaneous presence of short-term and long-range

dynamics.

Simulation Study

We investigated the theorical proprieties of the Transfer Entropy measures

incorporating long range correlations in a benchmark trivariate VAR model [2]:

We set the parameters to reproduce oscillations and interactions commonly

observed in cardiovascular and cardiorespiratory variability [2]. Specifically, to mimic

the self-sustained dynamics typical of respiratory activity (process 𝑅, 𝜌𝑟 = 0.9, 𝑓𝑟 =

0.25) and the slower oscillatory activity commonly observed in the so-called low-

frequency (LF) band in the variability of systolic arterial pressure (process 𝑆, 𝜌𝑆 =

0.8 , 𝑓𝑠 = 0.1 ) and heart rate (process 𝐻 , 𝜌ℎ = 0.8 , 𝑓ℎ = 0.1 ). The remaining

parameters were set as 𝑎 = 0.1, 𝑏 = 0.4, 𝑐 = 1, 𝑒 = 𝑐, [2].

Experimental Data

The 𝐻, 𝑆 and 𝑅 time series were measured in a group of 62 healthy subjects

(19.5 ± 3.3 years old, 37 females) monitored in the resting supine position (SU) and

in the upright position (UP) reached through passive head-up tilt [1].

CONCLUSIONS

Both simulations and real data analysis revealed that the proposed method

highlights the dependence of the information transfer on the balance between

short-term and long-range correlations in coupled dynamical systems.
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Exact expressions of the information transfer are obtained using state space models for coupled Gaussian processes observed

at multiple temporal scales [3]. Recently this framework was extended to VARFI processes [1].
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Multiscale representation obtained through filtering (FLT) and downsampling (DWS) steps. The downsampled process has an

innovations form state space model (ISS) representation from which submodels can be formed to compute the partial variances

needed for the computation of the Transfer Entropy [3].

The decomposition of the joint information transfer evidences

different types of contributions with physiological meaning.

•𝐼𝑅,𝑆→𝐻 > 0 - Synergy

•𝐼𝑅,𝑆→𝐻 < 0 - Redundancy.

Simulation Study

Experimental Data

Plots represent the distributions (median and interquartile range) of (E1) 𝑇𝑆→𝐻,

(E2) 𝑇𝑅→𝐻, (E3) 𝑇𝑅,𝑆→𝐻 and (E4) 𝐼𝑅,𝑆→𝐻 , computed as a function of the time

scale 𝜏.

(E1) (E3)

(E2) (E4)

Multiscale TE measures during Supine rest (SU) and Head Up Tilt (UP).

Illustrative theoretical profiles of the multiscale TE, 𝑇𝑆→𝐻 ,

𝑇𝑅→𝐻, 𝑇𝑅,𝑆→𝐻 and of the interaction 𝐼𝑅,𝑆→𝐻 for a VARFI process

and varying d of the target.

• Generally, the information transfer at long time scales

increases with d of target (S1 and S2);

• The joint information transfer at long time scales also

increases with d of the target (S3);

• At increasing d of the target, ITE decreases (S4),

suggesting an increased redundancy.

Theoretical profiles of the multiscale TE varying d of the

sources (not shown here for brevity) suggest opposite

trends: TE decreasing with d and increase of synergy

regarding ITE.

• For SU at 𝜏 = 1, 𝑇𝑅→𝐻 > 𝑇𝑆→𝐻 , indicating prevalence of

Respiratory Sinus Arrhythmia (RSA) [4];

• The postural stress induced by UP is associated with a

markedly higher 𝑇𝑆→𝐻 at lower scales up to

τ ≈ 5 reporting baroreflex activation with UP in agreement

with previous works [4-7];

• The postural stress induced by UP is associated with a

lower information transfer RESP to RR at 𝜏 = 1 . This

finding agrees with previous works reporting weakening of

RSA with UP [4-7];

• At 𝜏 = 1 𝑇𝑅→𝐻 in SU is higher than in UP, while at 𝜏 > 1
𝑇𝑅→𝐻 in UP is higher than in SU. The multiscale

representation highlights that RSA for slow oscillations is

enhanced by tilt; this may be an effect of long-range

correlations, as suggested by the simulation results in of

𝑇𝑅→𝐻 (S2) where the information transfer at long time

scales increases with d of target.

• The two previous effects determine a higher joint

information transfer 𝑇𝑅,𝑆→𝐻 during UP for scales up to 𝜏 ≈

10.

• The interaction transfer decreases significantly with tilt,

denoting stronger redundancy, as expected from previous

works [4].

Decomposition of the joint TE, in a network of 3 interacting processes 𝑹, 𝑺,𝑯, considering 𝐻 as target and 𝑆, 𝑅 as sources.
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