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Introduction

It is generally believed that, in the thermody-
namic limit, the microcanonical description as a
function of energy coincides with the canonical

description as a function of temperature. How-
ever, various examples of systems for which the
microcanonical and canonical ensembles are not
equivalent have been identi�ed. Here we show
that ensemble non-equivalence can manifest it-
self also in random graphs with topological con-
straints.

Methods

The di�erence between the description provided
by the microcanonical distribution (heraby indi-
cated with f) and that provided by the canon-
ical distribution (hereby indicated with P ) can
be compactly expressed via the Kullback-Leibler
divergence

DKL(f ||P ) =
∑
G∈G

f(G∗) ln

[
f(G∗)

P (G∗)

]
that reduces to a di�erence of entropies (see
main box). Upon inspecting its behavior in the
thermodynamical limit

N −→ +∞

(i.e. in the limit of in�nite networks), we obtain
the proper quanti�cation of the ensemble non-
equivalence.

Conclusions

While graphs with a given number of links are
ensemble-equivalent, graphs with a given degree
sequence are not. This result holds irrespec-
tive of whether the energy is nonadditive (as
in unipartite graphs) or additive (as in bipartite
graphs). In contrast with previous expectations,
our results show that

• physically, nonequivalence can be induced
by an extensive number of local con-
straints, and not necessarily by long-range
interactions or nonadditivity;

• mathematically, nonquivalence is deter-
mined by a di�erent large-deviation be-
haviour of microcanonical and canonical
probabilities for a single microstate and
not necessarily for almost all microstates.

The latter criterion, which is entirely local, is not
restricted to networks and holds in general.
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Ensemble non-equivalence

Figure 1: Graphic illustration of the two di�erent network ensembles, i.e. microcanonical and canonical.

The recently-provided de�nition of measure equivalence states that ensembles are (said to be)
equivalent when the canonical probability distribution converges to the microcanonical probability
distribution in the thermodynamic limit.

The criterion above can be quanti�ed via the Kullback-Leibler (KL) divergence that, in turn, reduces
to a di�erence of entropies. In fact,

DKL(f ||P ) =
∑
G∈G

f(G∗) ln

[
f(G∗)

P (G∗)

]
(local criterion) = ln

[
f(G∗)

P (G∗)

]
(di�erence of likelihoods) = − lnP (G∗) + ln f(G∗) =

(de�nition of microcanonical ensemble) = − lnP (G∗)− ln Ω(G∗)

(entropy-likelihood relationship) = −
∑
G∈G

P (G∗) lnP (G∗)− ln Ω(G∗)

= Scan − Smic ≡ ∆

where the property we have employed is indicated in parentheses. Proper ensemble non-equivalence
is inspected by calculating the quantity

s = lim
N→+∞

∆

N

i.e. the KL divergence in the asymptotic limit of in�nite networks.

Non-equivalence can be inspected quite easily in the case of the Erdös-Rényi model; in fact, one �nds
that

Smic = ln Ω = ln

(N(N−1)
2

L

)
' −

(
N

2

)
[(1− p) ln(1− p) + p ln p]−∆ = Scan −∆

where p = 2L
N(N−1) and ∆ = ln

√
2πσ2[L], i.e. it is (proportional to) the logarithm of the standard

deviation of the only constraint de�ning our model, i.e. the total number of links. Since σ[L] ∝ N ,
one �nds that s ∝ lnN

N → 0 in the thermodynamic limit: hence, the microcanonical and the
canonical Erdös-Rényi models are equivalent. Generally speaking, however, ensembles are not
equivalent: this is the case of the Con�guration Model, for which one �nds s > 0 (e.g. for sparse
regular networks, it holds that s = ln

√
2πk).

Taken together, the above examples indicate that ensemble equivalence holds when there is a single
global constraint, while it is broken when there is an extensive number of local constraints. This also
indicates that graphs with local constraints are always nonequivalent, irrespectively of the breadth
of the degree distribution.


