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Abstract
A derivation of the coupled system of electromechanical continua is presented in the

framework of nonequilibrium thermodynamics. Nonlinear polarisation, Gauss’s law,
Maxwell stress, entropy current are consequences of a general dissipative treatment,
based on the ideas in [1].

Electrodynamics and dissipation

Dissipative effects are represented in electrodynamics through electric resistance and
nonclassical polarisation and magnetisation. Sometimes radiation itself is considered
as a dissipative effect. However, the field equations of electrodynamics are accepted as
ideal and nondissipative.

There are some well known problematic aspects of ideal electrodynamics. Those are
the singular energies of point charges, point dipoles, and the radiation reaction force,
leading to the self accelerated motion when mechanics and electrodynamics are to be
treated together. We know well how charges are moving in an external field, and we also
can calculate the electromagnetic fields produced by charges moving on fixed paths.
However, moving charges self-interacting with their self-fields is problematic both from
a mathematical and a physical point of view.

The study of electromagnetic singularities leads to the concept of mass renormalisation
[2]. According to several experts, renormalisation has a dissipative flavour but without
a conceptual framework of dissipation.

Gradient theories of electrodynamics and mechanics

A weakly nonlocal, that is, gradient extension of the Maxwell equations is a promising
approach to remove the mentioned singularities directly from the field theory [3, 4].
Gradient extension is also a long-standing program of continuum theories in general,
particularly in continuum mechanics [5]. There are different methods [6, 7] that con-
sidering the second law or not. Also, the representation of the frame indifference may
be different, which is a key aspect when second law compatibility is investigated.

Nonequilibrium thermodynamics and ideal evolution

Nonequilibrium thermodynamics is dealing with the consequences of the second law.
That kind of consequences independent of the material structure and only the fundamen-
tal balances are introduced as conditions. Modern approaches can construct evolution
equations without the help of variational principles, only with the help of the second
law. This is well known for a long time ago for homogeneous systems. For internal
variables, the second law results in relaxation type ordinary differential equations. An-
other known example is extended heat conduction[8, 9]. In the general case, for weakly
nonlocal state spaces, it is not straightforward, and the various methods differ in com-
plexity and in the number of assumptions.

One of the essential benchmarks is to reproduce the ideal evolution, construct Euler-
Lagrange equations without variational principles. It is generally and systematically
possible if thermostatics and extensivity are suitably generalised for gradient dependent
thermodynamic state spaces. Remarkably, Newtonian gravity emerges from thermody-
namics if a weakly nonlocal scalar field is considered as a thermodynamic state variable
and balances of mass, momentum and energy are considered as constraints [10].

Coupled hydrodynamics and electrostatics

In this case, the state variable is the electric potential ϕ. The Gibbs relation for fluids
with specific quantities is written as

Tds− pdv − P
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Here u, e, s, v are the specific internal energy, charge density, entropy and volume, T, p
are the temperature and the pressure, E = −∇ϕ is the electric field and P is the polar-
isation field, and ε0 is the permeability of the vacuum. Therefore the specific entropy
and the internal energy are both depend on the electric potential and its gradient:
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The balances of mass, momentum, energy and charge are considered as constraints,
characterising the extensive quantities. In a substantial form these balaces are the fol-
lowing

ρ̇ + ρ∇ · v = 0,

ρv̇ −∇ ·T = 0,

ρu̇ +∇ · q = T : ∇v,
ρė + ρ∇ · v = 0.

Here v,q,T, j are the velocity field, the heat flux, the second-order stress tensor and
the electric current density, respectively. The overdots are substantial time derivatives;
the central dots denote contractions.

The calculation of the entropy production is straightforward, the simplest method is
the separation of divergences. The entropy balance is obtained in the following form:
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Here the electric displacement D = ε0E +P and I denotes the second-order unit ten-
sor.. The thermodynamic forces and fluxes for the thermal, mechanical, electric matter
and electric fields can be identified conveniently. Remarkable is the coupling of the
scalar electric interaction with the scalar part of the mechanical interaction. It is also
remarkable that the usual relation Maxwell stress and electrostatic force density, ρfestat,
that is

∇ ·
(
DE− E2

2
I

)
= −ρeE−∇E ·P = ρfestat

appears only in the ideal limit, without dissipative effects.

Concluding remarks

• Dissipative evolution equations of electrodynamics coupled to continuum thermome-
chanics can be derived from the second law in the quasistationary approximation.
Radiation is the basic challenge.

• Ideal, nondissipative evolution emerges when the corresponding thermodynamic
force is zero. Stress-force relations are natural consequences.

• A simplified example is given in this poster. A similar calculation is straightforward
for the complete system of Maxwell equations without radiation.

• For a relativistic extension, radiation reaction must be considered. In this respect, dis-
tribution theory and absolute treatment of spacetime can be instructive, see [11, 12].
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