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Abstract: Much has been discussed whether the minimum entropy production principle (MEPP), has general application or whether it is of
rather limited validity. In particular, it has been concluded that for systems with constant phenomenological Onsager coefficients the entropy
production can only decrease in time until a minimum is reached when the system is in the stationary state, but this is still under debate. In
this work heat transport in solids with internal structure within the framework of a two temperature description. The time evolution
equations for such system are derived through the usual methods of irreversible thermodynamics and also from the MEPP. We find that both
sets of stationary equations coincide without imposing any restriction on the phenomenological coefficients other than those coming from
the internal structuring of the solid. We exemplify this finding with the case of pure Aluminum subjected to a heat pulse.

• First observation
According to de Groot and Mazur [1] affirmed : "Stationary non
equilibrium states have the important property that under certain
conditions, they are characterized by a minimum entropy
production, compatible with the external constrains imposed on the
system. This property is valid only if the phenomenological
coefficients are supposed to be constants.”
The principal assumption is 𝐿𝑞𝑞 = 𝑐𝑡𝑒. Then, the equation of energy 

conservation in the stationary state is at grips with the solution of 
the variational problem, namely

Heat conduction process and MEPP
Differential equations describing the heat conduction process are
derived from the first law of thermodynamics and the Fourier’s law,
namely
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and from the principle of minimum entropy production
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Since the principal assumption is so restricting on systems, it has
been tempting to think that stationary state for real heat
conduction systems, from variational principle, may be achieved by
the dependence of the phenomenological coefficients.
• Second observation
Assuming that the phenomenological coefficients depends on
temperature, 𝐿𝑞𝑞 = 𝐿𝑞𝑞 𝑇 , from the energy conservation in the

stationary state one gets
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On the othe hand, from the MEPP the result is
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There is a little difference in the coefficient of the second term
which comes from the temperature dependence of the Onsager
coefficient. In this case the energy balance equation and the Mepp
do not yield the same result.

• Third observation
An alternative assumption is that the Onsager coefficient depends
on position , 𝐿𝑞𝑞 = 𝐿𝑞𝑞(𝑥), which means that the system of

interest is an inhomogeneous material. In this case we get the
same temperature distribution from two different ways, the MEPP
and the energy conservation equation.
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The macro-temperature, 𝑇𝑀, is an average temperature that
describes the processes that occur in the bulk and the micro-
temperature, 𝑇𝑚, describes the changes that frequently and
slightly separate the system from the average temporal evolution
due to the emergence of effects originating from the
microstructure. Assuming that the thermodynamic space of
variables is constituted by the internal energies 𝑢𝑀 and 𝑢𝑚 in such
a way that the entropy is a function of them, the equations for the
entropy production and the dissipative fluxes read, respectively,
as
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where 𝐿𝑖𝑗 (𝑥) are phenomenological coefficients. The comparison

of the two temperature model for structured solids (aluminum,
meat, and foam like structures) with experimental results has
shown that the model reproduces well the non-Fourier behavior in
two cases, non-equilibrium states which do not satisfy the
Onsager reciprocity relations and also states satisfying the
Onsager relations. The results obtained also reveal that the non-
Fourier behavior of the structured material comes from the
influence of the microtemperature which contains the information
of the microstructure and that the Fourier description of heat
transport is blind to the details of the microstructure [2]. More
over, the profile of the entropy production for different times in
the case of pure Aluminum can be seen in Figure (1). We note that
the region near the thermally excited boundary (𝑥 = 𝐿) is where
more entropy is being produced. Also we observe that the entropy
production for the early stages of the time evolution is greater
than that for later times as the system approaches the stationary
state. This suggests that the stationary state will obey a minimum
entropy production principle as shown bellow.
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Two temperature model
The two temperature model is a proposal to explain no-Fourier
heat transport in a rigid solid where the main assumption is to
consider that this behaviour is due to the consideration of non-
homogeneous materials.
The system consists of a rigid heat conducting solid with an
internal structure in which two coupled irreversible processes take
place: on the one hand, processes that occur at a macroscopic
length scale, that is at a length scale of the same order of
magnitude as the characteristic length of the system itself L; on the
other hand, processes that occur at a length scale of the same
order of magnitude as the characteristic length of the internal
structure. The starting assumption is that the total internal energy
of the system can be divided into two parts, each one
corresponding to the above two dissipative processes,
𝑢𝑇 = 𝑢𝑀 + 𝑢𝑚 , where u stands for the internal energy and the
labels T, M and m denote total, macroscopic and microscopic
processes, respectively. Defining two quasi-temperatures through
the known caloric relation, u=CT with C the heat capacity at
constant volume, we have the following

Conclusions
As can be seen, the transport equations obtained from the
energy balance equation and the variational principle coincide if
the transport coefficients depend directly on the position,
𝐿𝑖𝑗 = 𝐿𝑖𝑗 (𝑥) . This means that the microstructure of materials

plays an indispensable role in the transport of energy and
therefore in the entropy production, making the latter a
minimum.
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If the variational principle is applied to this model, we find the
amazing fact that energy balance equation and MEPP yield the
same result.

Figure 1. Entropy production profile at different times for pure
Aluminum. Blue: 100, Orange: 120, Green: 150, Red: 180,
Purple:220.


