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Comparative performance analysis of a Brownian Carnot cycle
from the perspective of a stochastic model against the Linear 

Irreversible Thermodynamic theory.

Chimal-Eguía J.C.  Páez-Hernández R. and Pacheco-Paez J.C

.

Table 1 Main results for stochastic model and LIT model for the ecological function regime, the efficient power regime

and the máximum power regime.

In this work we present a Brownian Carnot cycle, which has already been studied by Schmield et al. (2007) as well as by Izumida and Okuda (2010); but now considering two different working regimes, namely the Maximum Ecological Function
(MEC) and the Maximum Efficient Power (MEP). For the MEC and MEP working regimes, the thermodynamic properties of the cycle are obtained, in particular, it is showed that the maximum efficiency now depends on two parameters α and β,
instead of only one parameter obtained previously by Schmiled et al. in the maximum power regime. It is worthwhile to notice that for characteristic values of α and β the original results obtained by Schmield are recovered. From the previous
observations, the authors consider that the results obtained represent a more general case that includes other working regimes
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where, 𝑤1 and 𝑤2 are the particle position variances in the finite cycle 
according with Schmiedl et al[8].
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The Brownian Carnot cycle under the ecological criterion using the stochastic model
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sustituing (2) and (3) in (1)  yields

From the cyclic process the work is given as,

where 𝑊1
𝑖𝑟𝑟 is the mean irreversible work defined by Schmield and S the entropy of the

Brownian particle. Likewise, the heat uptake during the cycle from heat reservoir at
temperature 𝑇𝐻 in step 1 can be expressed as;
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The Brownian Carnot cycle under the ecological criterion using Linear
Irreversible Thermodynamics

As well is known the Power, the Entropy production, and Ecological function, written in terms
of Fluxes and generalized forces are given as;
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(6)

where 𝑡1, 𝑡3are the transition times in stochastic model
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Diverse criteria of merit have been proposed for the optimization of finite-time engines. For instance, in the Curzon-Ahlborn work [1], maximization of power was proposed to open the perspective of setting up more realistic
theoretical bounds on thermodynamics processes that produce entropy. Considering the CA paper as a starting point, many authors began to introduce different objective functions, namely: In the beginning, some authors
proposed the entropy production minimization as one of the first criterion [2]. Then in 1991, Angulo introduced the ecological function [3]. Yilmaz et al [4]. studied the efficient power function which considers the effects on the
design of heat engines, as the multiplication of power by the cycle efficiency. It is important remark that one of the most astonishing results obtained, is that those thermal engine models show some universality regarding the
behavior of the efficiency when it works at the maximum power regime [5], although the analyzed models were different in nature and scale [6-8]. Kedem et al [9], obtained some qualitative predictions confirmed by
experimental data. Then, through Linear Irreversible Thermodynamics (LIT). Although traditionally most energy-transfer devices discussed by the Finite Time Thermodynamics (FTT) were macroscopic heat engines, in recent
years, isothermal engines with mesoscopic description have been studied, particularly those concerned with thermal fluctuations named Brownian motors. These engines have been studied since the seminal work of Sekimoto
et al. [10], where the author studied the thermodynamic properties of Langevin systems that are far out of equilibrium. Of special interest is Schmiedl’s work [7] which studies the efficiency of a Brownian motor at maximum
power in a similar manner as the macroscopic Carnot cycle, i.e., by two isothermal branches and two adiabatic ones. In their work Schmiedl, et al. found the efficiency at maximum power as; (A). This relation was considered by
the authors as a universal relation for this type of engines, which differs form the famous CA efficiency. Although, under proper conditions, when the linear response regime or ‘‘thermodynamic limit’’ is considered (ΔT → 0), we
could make a relationship between macroscopic and mesoscopic systems. In 2010, Izumida Y. et al. [11] introduced a model for a Brownian Carnot cycle which obtained equivalent results as those determined by Schmiedl et al.
[8] but using Linear Irreversible Thermodynamics (LIT) for the maximum power regime, as (B). This paper shows that the Izumida assumption prevails when we consider other working regimes (different from the maximum
power regime). Through the stochastic model of Schmiedl, we find the thermodynamic properties in two different regimes: the one with the maximum ecological function and the one with the maximum efficient power. Then,
we show how to obtain comparable results using the LIT with the idea postulated by Izumida et al. [11] concerning the cycle period.
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Using the efficiency definition and sustituting (8), is posible 
obtain the efficiency at maximum ecological function E (11)

Eq. (11) is remarkably that obtained by Schmield [8], in our case α, β are different 𝛼 =
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using in Eq. (14)  , and fluxes and force, as well as
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The Brownian Carnot cycle under eficiente power stochastic model

This regime was studied by Yilmaz et al [4], which consist in the multiplication of the power
by the cycle efficiency. The criterion was successfully applied to the Carnot, Brayton, and 
Diesel cycles, among systems.

From above, the aproach called maximum efficiency power in the context of termal engines is defined as,

𝑃𝐸 = 𝜂𝑃 (17). Now using (5) and (6), plus efficency definition in (16), the efficient power yields
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The Brownian Carnot cycle under the efficient power criterion using Linear Irreversible Thermodynamics

Taking into account the expression for the power output and 
efficiency obtained
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Conclusions

The main results obtained in this work, are shown in Table I, and we remark that, in the case of the
maximum efficiency for the ecological function regime, we obtained the following relation (Eq. (14)),
which is similar to the main result obtained by Schmiedl et al [7]. (which they called it a ‘‘universal law’’).
However, we think that in our case this relation is more general because, although the structure is
almost the same, the regime in which we work depends on the value of the α and β parameters. For
instance, if β = 1, α = 2, we recover the efficiency obtained by Schmiedl et al. [7] for the efficiency at
maximum power. But, if we change the value of these parameters we can move to another working
regime. It is worthwhile to notice that when we take t1 = t3 and Airr = Cirr we recover the traditional
results for the efficiency at the ecological regime obtained in related papers [10,11].
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