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ABSTRACT: Within the context of finite-time thermodynamics several regimes of performance have been used to study the well known Curzon-Ahlborn (CA) heat engine model [1-5]. Also the
optimal performance and the effects on environment are studied to find the best approximation with real heat engines.

In this work we present a model of an arrangement in series of irreversible Carnot heat engines, which consist of k reservoirs connected in series, this heat engine model is working under three
different regime of performance: maximum power output, maximum ecological function [6] and maximum efficient power [7]. At first we used three reservoirs, and we calculated its efficiency. For
the case of maximum power output we calculated the efficiency for the case of the generalizing of k reservoirs, and we get an efficiency expression similar to the one of Curzon-Ahlborn, the
irreversibilities are taken into account by irreversibility parameter R. Finally we present the comparison of the efficiencies obtained under three differents regimes of performance.

I. Introduction:

Thermodynamic efficiency is known as one of the more
popular criteria after Carnot [1] to analyze the performance of
thermal engines. Carnot found that any engine extracting heat
from a reservoir at temperature !" has to deliver some heat to
a reservoir at lower temperature !# while work is doing.
Moreover, Carnot showed that maximum efficiency in the
cyclic process is

A schematic diagram of a thermal engine system is shown in
Fig. (2a). Two irreversible Carnot heat engine cycles in series
form a single cycle operating between reservoirs at
temperatures !" and !# (!" > !#). Waste heat from the first
cycle is used totally as the heat source of the second cycle.
The working fluids in each cycle system flow continuously so
that combined cycle operates in steady state. According to
figure 2, we can get

Using the first law of thermodynamics in Fig. (2a), we get

From equations (13) and (17) we obtain,

For the case o k cycles, we get

IV. Ecologica function criteria:

In 1991 Angulo-Brown[5] introduced a new optimization
criteria, the so called ecological function, tha is given by

Where W is the power output and % is the entropy production
of the engine, for the case of the Fig.(2a), we calculated the
total power by means of WT = W1+W2, the total entropy
production as %& = %" + %# and the total ecological function
as )& = )" + )#.

In Fig. (2b) we can observe the behavior of the total ecological
function for the engine.

IV. Efficient power criteria:

In 2006 Yilmaz[6] proposed a criteria given by the product of
the power and the efficiency of the engine, this criteria is
know as efficient power and can be written as

+) = ,-

As similar as ecological function the total power of the engine
is calculated as, WT = W1+W2. In Fig. (2c) is presented the
behavior of the total efficient power for theengine.

which is known as Carnot efficiency. The limitations of
Classical Equilibrium Thermodynamics (CET) to formulate
useful criteria describing the performance of real engines
motivated the development of a new field, known as Finite
Time Thermodynamics (FTT) [2,3], which keeping the
formalism as close as possible of equilibrium thermodynamics
while introduces simple modifications to take into account the
main sources of irreversibility observed in real engines. A
paradigmatic model in FTT is due to Curzon- Ahlborn (CA) [4].
Assuming that the heat transfers obey a Newton aw, they
found that the engine working at maximum power has the
efficiency given by,

,. = 1 − ⁄!# !"

The endoreversible engine is mainly based in the idea that, for
many processes, it is possible to conceive the internal
relaxation times as being negligibly short compared with the
duration of the full processes. Previous research has recently
proposed a manner to include the internal contributions to
the global entropy production by means of the Clausius
inequality. If any internal irreversibility is considered, then the
Clausius inequality gives,

,.2 = 1 − ⁄!# !"

∆4"5 + ∆4#5< 0

Expression (3) becomes an equality by means of

∆4"5 + 8∆4#5 = 0

II. Non-endoreversible engine working at maximum power:

For case of a non-endoreversible CA engine, as shown in Fig. 1

⁄8 = ∆4"5 ∆4#5

⁄⁄9" !"5 = 89# !#5 6 ;< ⁄⁄9# 9" = !#5 8!"5 (7)

The efficiency inside of the CA engine is

Where is called the non-endoreversibility parameter, given by 

,=> = 1 − ⁄(!#5 8!"5)

If we calculate the work per unit time, the power output, but
now using (8) instead of , = 1 − ⁄(!#5 !"5), we have

- ,=>, 8 = BC,=>
8!" 1 − ,=> − !#
B + C8 1 − ,=>

that is,

,#=> − 2,=> + 1 − ⁄!# 8!" = 0

,∗FG = 1 − ⁄!# 8!"

which is a kind of non-endoreversible CA efficiency. The power
output for endoreversible CAN engines is zero at ,=> =0 and
when , = ,. [11], and for the non-endoreversible case
-(,=>, 8) has zeros at ,=>=0 and we have

,=> = ,. = 1 − ⁄!# 8!"

that is, at a kind of non-endoreversible Carnot efficiency.

III. Series of irreversible thermal engines at maximum power:

Heat engines with several heat sources are common for many
real-world applications such as industrial heat-recovery
systems and solar energy installations.
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The point ,∗FG where the function of (9) reaches its
maximum value is obtained by means of |L-/L,> N∗OP = 0,

and this condition gives
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Conclusions:

The interest of this work is of teaching and as an immediate application of FTT. Some
results are taken from the literature, nevertheless other they are novelty obtained of
the model. Here is shown that real models can be approximate as a series of cycles
working at maximum power output. The results could be considered for an irreversible
engine. Also is important to remark that (21) is reduced to (12) when only there is one
cycle. Also other criteria of performance were considered and we get new results.


