Do Entropic Biodiversity Methods Outcompete Alternatives ?

Evaluation of entropy/information approaches is sporadic:

simulation

empirical

(Sherwin et al. 2017)

Bill Sherwin <u>W.Sherwin@unsw.edu.au</u>

Evaluation Criteria Biodiversity measures must:

Forecast under Natural / Artificial processes

Measure to know if hypothesis / policy correct?

EG: Evaluation of 2 Entropic methods

Assess gene-frequency differentiation between groups, times or locations

Incorporating functional differences between variants.

Differentiation: Bray-Curtis (Bray & Curtis 1957)

USE:

- Widespread: Ecology, Metagenomics (Peng et al. 2020).
- Molecular Ecology (AFD, Berner 2019a,b)

NO Forecasting

Unlike Hill-measure entropies

A function of a Hill-entropy

Forecasting Differentiation with Bray-Curtis

Bray-Curtis for 2 locations, 2 variants (EG SNP genes)

• $B = |p_1 - p_2|$, averaged over many genes

where p_1 , p_2 are proportions of one of the two variants, in locations 1,2

OR for multiple variants

• $B = \frac{\sum_{j=1}^{S} |a_{1j} - a_{2j}|}{\sum_{j=1}^{S} (a_{1j} + a_{2j})},$

 a_{1j} and a_{2j} are abundances in each location, for variant j ($1 \le j \le S$) (Chao & Chiu 2016, Ricotta & Podani 2017, Ricotta et al. 2021)

Differentiation with Bray-Curtis & Competitors

Bray-Curtis for 2 locations, 2 variants (EG SNP alleles)

• $B = |p_1 - p_2|$ where p_1, p_2 are proportions of one of the two variants in locations 1,2

Competitors of Bray-Curtis

 $G_{ST} = [H_T - \overline{H_1, H_2}]/H_T \approx F_{ST} = \sigma_p^2/(\overline{p} * \overline{1-p})$ (Halliburton '04)

where

- H_T is the Hardy-Weinberg (Binomial) expected heterozygosity ~~ entropy eg $H_T = 1 - \bar{p}^2 - (1 - \bar{p})^2$; $H_1 = 1 - \bar{p}_1^2 - \bar{q}_1^2$
- \bar{p} is the average p over the two locations (1,2).
- σ_p^2 is the variance of p values between locations,

Forecasting Differentiation with Bray-Curtis

$\begin{array}{l} \textbf{G}_{ST} \text{ has an expected equilibrium forecast} \\ \bullet \quad \textbf{G}_{ST} = 1/(1+8N(2m+\mu)) \qquad (How M - effective population size at each location \\ m - dispersal per generation between locations (0 \le m \le 1) \\ \mu - mutation rate per generation (0 \le \mu \le 1) \end{array}$

(Halliburton '04)

New Equilibrium forecast for Bray-Curtis

•
$$B = \sqrt{\frac{2*^2 D - 2}{^2 D(1 + 4N(2m + \mu))}}$$

(Sherwin '21)

 ^{2}D – Second order Hill Entropy within-location or $^{2}D = 1/(1 - H)$ or $H = 1 - 1/{^{2}D}$

Checks of Forecasting by Simulation

SO...Corrected Equilibrium forecast For Bray-Curtis

•
$$B = 0.8 \sqrt{\frac{2^2 D - 2}{2D(1 + 4N(2m + \mu))}}$$

Sherwin '21

Evaluating Bray Curtis

Forecasting Currently for

- Equilibrium, 2 variants
- Non-equilibrium (time "t" after dispersal m = 0)

NB BAD dependence on variation within-location 2D

- <u>also</u> a problem for **G**_{ST}
- <u>not</u> for other entropic differentations:

Mutual Information, Morisita-Horn/Jost

EG: Evaluation of 2 Entropic methods

Assess gene-frequency differentiation between groups, times or locations

Incorporating functional differences between variants.

Functional Differentiation

Differentiation depends not just upon differences of

- Number of different types
- Frequency of variant types

BUT Also upon how variants differ from one another, eg:

- Colour
- Physiology
- DNA Sequence
- Etc

Functional Differentiation – Past Problems

- Insensitive to function !!
- Negative diversity !
- Between-location differentiation dependent on variability within-locality
- Etc

Functional Diversity - A Novel Approach

- Avoids counterintuitive problems
- Based on 3 Hill entropies (proportion only)

$${}^{q}D = \left(\sum_{i=1}^{S} p_{i}^{q}\right)^{1/(1-q)}$$

- S=4= number of types; p_i=proportions; q=0,1,2 is "order"
- Add in *d_{ii}* functional distance

(Chao et al 2020)

• eg difference of gene's DNA sequence at 1 location

d _{ij}	Seq 1	Seq 2	Seq 3	Seq 4
Seq 1	0	2	8	8
Seq 2	-	0	8	8
Seq 3		-	0	6
Seq 4			-	0

Functional Diversity - A Novel Approach

d _{ij}	Seq 1	Seq 2	Seq 3	Seq 4
Seq 1	0	2	8	8
Seq 2	-	0	8	8
Seq 3		-	0	6
Seq 4			-	0

Tau cutoff applied to d_{ij}

- if $d_{ij} < \tau$, treat as same type
- Low *τ* emphasizes finer distinctions
- Can use all possible *τ*-cutoffs, to give *τ*-profile

(Chao et al '20).

Evaluation of 2 Entropic methods

Bray-Curtis differentiation B

- can be forecast
- depends on within-location diversity (some competitors do not)

Functional diversity τ method

Avoids pitfalls of competitors

'Entropy' Topical Collection

 Do Entropic Approaches Improve Understanding of Biology?

https://www.mdpi.com/journal/entropy/special issu es/entropy_biology

Editors Sherwin & Niven

Equations Etc

- Sherwin '21 Is Bray-Curtis differentiation meaningful in Molecular Ecology? Molec. Ecol. Res. (submitted) <u>https://doi.org/10.22541/au.161839260.09775220/v1</u>
- Chao et '20 *Ecol. Monogr.*
- chao.shinyapps.io/SpadeR
- georges.biomatix.org/dartR
- biology-assets.anu.edu.au/GenAlEx

THANKS to Collaborators & Students \$\$: Academia Sinica Taiwan, EU

W.Sherwin@ unsw.edu.au

89:e01343

Functional diversity of order q

Chao et al '2020

$$= \left(\sum_{i=1}^{S} p_i \left(\sum_{j=1}^{S} [1 - f(d_{ij}(\tau))] p_j\right)^{q-1}\right)^{1/(1-q)}$$