

Direct disk diffusion test during bacteremia: evaluation of antibiotic susceptibility results

Samar Akbi ^{1,2, *}, Nassim Ahmed ^{1,2}, Nadjet Aggoune ^{1,2}, Ali Zerouki^{1,2}

¹ Department of Pharmacy, Faculty of Medicine, University of Algiers 1, 16028, Algiers, Algeria

² Microbiology Department, Central Hospital of the Army, 16331, Algiers, Algeria

* Correspondence: samakbi28@gmail.com

Abstract

Introduction: Bacteremia are emergencies that are life threatening to patients. Early initiation of adequate antibiotic therapy reduces mortality and morbidity. The purpose of this work was to evaluate the results obtained with the direct AST, carried out directly from positive blood cultures on Mueller-Hinton CHROMagar medium (CHROMagar 4, place du 18 Juin 1940 - 75006 Paris, France) and compare them with those obtained with the standard AST. Methods: To do this, 124 strains isolated from 124 bottles were tested against 21 antibiotics. The resulting diameters were read after 8h and 18h of incubation, interpreted using the CLSI breakpoints and compared to those obtained with the standard method. **Results:** It was found that, the results were extremely satisfactory at 18h (94.43% CA, 0.24% ME and 0.00% VME), compared to less conclusive results at 8h (87.32% CA). The best %CA were obtained with gentamicin, sulfamethoxazole+trimethoprim, levofloxacin, ampicillin and cefoxitin at 8h (all >93%) and 18h (all >97%). Also, non-fermenting GNB recorded the best results with 98.74%CA at 18h and Staphylococcus species the lowest ones with 90.70% CA at 18h. **Conclusion:** The encouraging results obtained during the present study suggest a possible future implementation of the direct-from-bloodculture AST as a routine technique. However, the standard AST remains the reference technique.

KEY WORDS: Antibiotic, Bacteremia, Blood culture, Direct AST, Disk diffusion technique

INTRODUCTION

Goals

Blood-culture bottles from patients or inoculation technique

Positive signal

Selected for the study

appearence

Pseudomonas aeruginosa

Klebsiella pneumoniae

Escherichia coli

Enterococcus faecium

Results and Discussions

Bacterial strains isolated

Overall Results

Reading delay	CA		mE		ME		VME	
	n	%	n	%	n	%	Ν	%
8h	1116	87,32%	150	11,74%	12	1,66%	0	0,00%
18h	1357	94,43%	78	5,43%	2	0,24%	0	0,00%

%CA >89.9% %ME ≤ 3% _{FDA}

> at 18h %CA extremely satifaying

%ME et %VME very satisfaying

at 8h %CA under acceptability criteria

%ME et %VME very satisfaying

Overall Results

	Our study N=124	Other similar studies		
% CA at 18h		87.40% Sukantha Chandrasekaran, 2018		N=60
	94.43%	96% Deepashree Rajshekar 2019		N=965
		90.40% Avani Desai, 2016		N=776
% CA at 8h	87.32%	69,9% (at 6h) Sukantha Chandrasekaran, 2018	CLSI	N=60
%ME et % VME at 18 h	meet FDA criteria	meet FDA criteria		

N=965 N=776

Distribution by bacterial type

Highest %CA at 8h and 18h for non fermenting-GNB

Lowest %CA at 8h and 18h for staphylococci

Concordance rates (%CA) by bacterial type at 8h and 18h

Distribution by bacterial type

Enterobacteria Non-fermenting GNB Staphylococci

Disagreements (%mE, %ME, %VME) by bacterial type at 8h and 18h

Distribution by bacterial type

	Our stydy N=124	Other similar studies Deepashree Rajshekar 2019
The highest %CA	Non-fermenting GNB (8h and 18h)	Staphylococci (98,5%)
The lowest % CA	Staphylococci (8h and 18h)	<i>Pseudomonas</i> spp. (94,6%) N=965
The highest % M E	Enterobacteria (8h and 18h)	Enterobacteria (2,8%) N=965

Distribution per antibiotic molecule

Analysis of direct AST results per antibiotic molecule for all bacteria combined

Distribution per antibiotic molecule

Analysis of direct AST results per antibiotic molecule for all bacteria combined

Distribution per antibiotic molecule

Results obtained with Enterobacteria

Concordance and disagreement rates obtained with C3G, carbapenems and CIP againt Enterobacteria at 18h

Results obtained with Enterobacteria

	Our study N=65	Other similar studies		
Main results at 18h	% CA satisfying for CTX CRO ETP MEM	% CA satisfying for CRO MEM CAZ et CIP	tisfying for MEM et CIP	
	% CA unsatisfying for CAZ IPM CIP	(95% to 98%) Deepashree Rajshekar 2019		N=437
		% CA satifying for C3G (92% to 96%) Desai A.2016		N=776

Results with other bacterial types

• No conclusion could be drawn

Résultats obtenus avec les autres types de bactéries

	Our study N= 124	Other studies		
% CA for non fermenting GNB	Satifying at 8h and 18h	Satisfying at 18h with <i>Pseudomonas</i> spp. and <i>Acinetobacter</i> spp.		0 N=965
% CA for staphylococci	Satisfying at 18h	Satisfying at 18h		
The lowest % CA obtained with staphylococci	CC and TEC	CC (Desai A. 2016)		N=776

Conclusion

Particular attention to be paid to beta-lactams tested against enterobacteria

Very satifying results at 18h

Particular attention to be paid to clindamycin and teicoplanin against staphylococci

Results slightly below the acceptability limit at 8h

Perspectives

Need to move towards standardization by learned societies

Additional studies should be performed with early reading at 10h

Early reading breakpoints should be developed