FLINDERS MICROSCOPY AND MICROANALYSIS

Microbial Induced Corrosion of 3D printed 316L Stainless Steel by *ferrooxidans*

Presented by Brianna Young

Supervisors: Professor Sarah Harmer & Professor Jamie Quinton

The Problem

Global costs of corrosion
≈\$3.4 trillion annually

• Australia spends \$32 billion a year

CORROSION DAMAGE BY AREA

What Is Corrosion?

 Deterioration of a material and its properties by a chemical or electrochemical reaction between the material and its environment

Cicek, V., & Al-Numan, B. (2017). Corrosion Engineering and Cathodic Protection Handbook : With Extensive Question and Answer Section. Somerset, UNITED STATES: John Wiley & Sons, Incorporated.

Mackey, E., T. Seacord, and S. Lamb, Stainless Steel: How Problems Arise and How to Avoid Them. Opflow, 2013. 39(11): p. 20-23.

What Is Corrosion?

 Deterioration of a material and its properties by a chemical or electrochemical reaction between the material and its environment

Cicek, V., & Al-Numan, B. (2017). Corrosion Engineering and Cathodic Protection Handbook : With Extensive Question and Answer Section. Somerset, UNITED STATES: John Wiley & Sons, Incorporated. Image from https://www.pipeline-journal.net/articles/stress-corrosion-cracking-scc-susceptibility-screening-enhancement

Microbial Induced Corrosion

- Microorganisms modify the environment
- Electrochemical processes associated with microorganisms

Inaba, Y., Xu, S., Vardner, J., West, A., & Banta, S. (2019). Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate. *Applied and Environmental Microbiology*, *85*(21). doi:10.1128/AEM.01381-19

Ebnesajjad, S. (2013). Handbook of Polymer Applications in Medicine and Medical Devices: Waltham: Elsevier Science & Technology Books.

Bacteria

Acidithiobacillus ferrooxidans (A.f)

- Iron and Sulfur Oxidising
- Acidophilic
- Mesophilic

Leptospirillum ferrooxidans (L.f)

- Iron Oxidising
- Acidophilic
- Mesophilic

$4Fe^{2+} + O_2 + 4H^+ \rightarrow 4Fe^{3+} + 2H_2O$

<u>2 μm</u>

SEM images provided by the Harmer research group

Inaba, Y., Xu, S., Vardner, J., West, A., & Banta, S. (2019). Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate. Applied and Environmental Microbiology, 85(21). doi:10.1128/AEM.01381-19

Could additively manufactured stainless steel reduce the costs seen due to corrosion damage?

- Layer by layer production
- Gives more control over design
- Reduces waste
- Physical properties can be similar
- Limited research into corrosive properties

Type 316 Stainless Steel

- Iron alloy, FeCr₁₈Ni₁₀Mo₃
- Austenitic stainless steel
- Resistant to corrosion
 - Cr₂O₃ passive layer

Stainless steel with chromium oxide intact

Stainless steel with chromium oxide damaged

OXYGEN

Stainless steel with chromium oxide self-reformed

Lehmann, J., Burkert, A., & Mietz, J. (2015). Investigations proofing the passive layer stability of stainless steels. *Materials and Corrosion*. doi:10.1002/maco.201408202 Lai, J. K. L., Lo, K. H., & Shek, C. H. (2012). *Stainless steels: An introduction and their recent developments*. Dubai, United Arab Emirates: Bentham eBooks

Laser Metal Deposition

- Material is deposited coaxially with laser beam
- Creates melt pool on substrate
- Solidifies to create layer
- Can create corner parts without bolts or welding

Mahamood, R. M. (2018). Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (1st ed.): Cham : Springer International Publishing : Imprint: Springer. Oliari, S., D'Oliveira, A., & Schulz, M. (2017). Additive Manufacturing of H11 with Wire-Based Laser Metal Deposition. Soldagem E Inspecao, 22(4), 466-479.

Project Aims

• Investigate microbial induced corrosion by A.f and L.f on the surface of 3D printed 316L stainless steel

 Determine if 3D printed 316L stainless steel could be used in conjunction with other materials for underground pipes in acidic soils

Experimental Design

1. Sample preparation

2. Sample incubation

3. Sample analysis

- Cut 10mm x 10mm x 0.5mm
- Polish Rz < 1μm
- Clean
- Temperature 30°C
- pH 1.8
- Cell concentration $1.5 \times 10^7 \ cells/mL$
- Scanning Electron Microscopy
- Auger Electron Microscopy
- Surface roughness
 - AFM
 - Profilometer

Results

Growth of bacteria over period of incubation

Polished 3D Printed Stainless Steel

Polished 3D Printed Stainless Steel – 21 day incubation

- Uniform spread of iron
- Lower intensity of chromium indicates weakness in chromium oxide passive layer

Unpolished 3D Printed Stainless Steel

20 µm

spot WD mag D HFW mode det

HV

Unpolished 3D Printed Stainless Steel – 21 day incubation

- Uneven distribution of chromium oxide layer
- Dark spots in oxygen and chromium due to pyrite particles

Traditionally Manufactured Stainless Steel

20 um

Control Lf 21 d Lf 21 d Lf 21 d HV spot WD mag HFW mode det 10.00 kV 3.0 10.1 mm 6000 x 49.7 µm SE ETD

Traditionally Manufactured Stainless Steel – 21 day incubation

- Potential damage to chromium oxide passive layer
- Higher intensity of iron corresponds to lower intensity of chromium and oxygen

Mass Loss Analysis

- Complex system affects mass analysis
- Addition of biofilm, bacteria or pyrite could alter mass loss measurements

Mass loss % of SS samples

2.50%

2.00%

1.50%

1.00%

0.50%

0.00%

-0.50%

7

Mass loss percentage

Mass loss % of unpolished 3D samples

■ Control ■ A.f ■ L.f

14

Day

Mass loss % of polished 3D samples

21

Conclusions

- Increased growth of *Acidithiobacillus ferrooxidans* and *Leptospirillum ferrooxidans* in all conditions
- Visual change to surface after incubation
- Possible damage to chromium oxide passive layer in traditionally manufactured and polished 3D printed stainless steel

Future Research

- Repeated experiments with longer periods of incubation
- Expand type of bacteria used
- Explore different additive manufacturing techniques

Acknowledgements

Prof. Sarah Harmer and Prof. Jamie Quinton

Flinders Microscopy and MicroAnalysis

Dr. Alex Sibley, Dr. Christopher Gibson and Mr. Tim Hodge

Harmer and Quinton research groups at Flinders University

Thank you for listening