Please login first

Generating a High-Precision True Digital Orthophoto Map Based on UAV Images
Yu Liu, 1 Xinqi Zheng 1 , Gang Ai 1 , Yi Zhang, 1 Yuqiang Zuo 2
1  School of Information Engineering, China University of Geoscience Beijing, Beijing 100083, China
2  China Land Surveying and Planning Institute, Beijing 100035, China

Published: 21 August 2018 by MDPI in ISPRS International Journal of Geo-Information
MDPI, Volume 7; 10.3390/ijgi7090333
Abstract: Unmanned aerial vehicle (UAV) low-altitude remote sensing technology has recently been adopted in China. However, mapping accuracy and production processes of true digital orthophoto maps (TDOMs) generated by UAV images require further improvement. In this study, ground control points were distributed and images were collected using a multi-rotor UAV and professional camera, at a flight height of 160 m above the ground and a designed ground sample distance (GSD) of 0.016 m. A structure from motion (SfM), revised digital surface model (DSM) and multi-view image texture compensation workflow were outlined to generate a high-precision TDOM. We then used randomly distributed checkpoints on the TDOM to verify its precision. The horizontal accuracy of the generated TDOM was 0.0365 m, the vertical accuracy was 0.0323 m, and the GSD was 0.0166 m. Tilt and shadowed areas of the TDOM were eliminated so that buildings maintained vertical viewing angles. This workflow produced a TDOM accuracy within 0.05 m, and provided an effective method for identifying rural homesteads, as well as land planning and design.
Keywords: structure from motion, Unmanned aerial vehicle, digital surface model, Multi View Stereo, true digital orthophoto map
Related articles
Comments on this paper
Currently there are no comments available.