Please login first
Luxon Nhamo   Dr.  Senior Scientist or Principal Investigator 
Timeline See timeline
Luxon Nhamo published an article in February 2019.
Top co-authors See all
Tafadzwanashe Mabhaudhi

34 shared publications

Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa

Amos Madhlopa

28 shared publications

Energy Research Centre, University of Cape Town, South Africa NIGERIA

Jonathan Lautze

22 shared publications

International Water Management Institute-Southern Africa, 141 Cresswell St., Weavind Park, Pretoria, South Africa

Matthew McCartney

20 shared publications

International Water Management Institute, IWMI-SEA, PO Box 4199, Vientiane, Laos

Solomon Kibret

15 shared publications

Ecosystem Management, University of New England, NSW, Armidale, Australia

12
Publications
32
Reads
2
Downloads
22
Citations
Publication Record
Distribution of Articles published per year 
(2015 - 2019)
Total number of journals
published in
 
7
 
Publications See all
Article 0 Reads 1 Citation Preparedness or repeated short-term relief aid? Building drought resilience through early warning in southern Africa L Nhamo, T Mabhaudhi, A.T. Modi Published: 04 February 2019
Water SA, doi: 10.4314/wsa.v45i1.09
DOI See at publisher website ABS Show/hide abstract
Southern Africa is highly vulnerable to drought because of its dependence on climate-sensitive sectors of agriculture, hydroenergy and fisheries. Recurring droughts continue to impact rural livelihoods and degrade the environment. Drought severity in southern Africa is exacerbated by poor levels of preparedness and low adaptive capacity. Whilst weather extremes and hazards are inevitable, the preparedness to manage such hazards determines their impact and whether they become disasters. Southern Africa is often caught unprepared by drought as existing early warning systems lack the drought forecasting component, which often results in reactionary interventions as opposed to well-planned and proactive response mechanisms. This study assesses the spatio-temporal changes of rainfall and aridity in southern Africa through an analysis of long-term precipitation and evaporation trends from 1960 to 2007. Stakeholder consultation was conducted in Madagascar, Malawi, Zambia and Zimbabwe during the peak of the 2015/16 drought, focusing on overall drought impacts, current water resource availability, existing early warning systems, adaptation mechanisms and institutional capacity to mitigate and manage droughts as part of overall disaster risk reduction strategies. Average rainfall has decreased by 26% in the region between 1960 and 2007, and aridity has increased by 11% between 1980 and 2007. The absence of drought forecasting and lack of institutional capacity to mitigate drought impede regional drought risk reduction initiatives. Existing multi-hazard early warning systems in the region focus on flooding and drought monitoring and assessment. Drought forecasting is often not given due consideration, yet it is a key component of early warning and resilience building. We propose a regional drought early warning framework, emphasising the importance of both monitoring and forecasting as being integral to a drought early warning system and building resilience to drought.Keywords: drought, SADC, early warning system, water scarcity, resilience, disaster risk reduction
Article 0 Reads 0 Citations Cereal Production Trends under Climate Change: Impacts and Adaptation Strategies in Southern Africa Luxon Nhamo, Greenwell Mathcaya, Tafadzwanashe Mabhaudhi, Si... Published: 01 February 2019
Agriculture, doi: 10.3390/agriculture9020030
DOI See at publisher website ABS Show/hide abstract
The increasing frequency and intensity of droughts and floods, coupled with increasing temperatures and declining rainfall totals, are exacerbating existing vulnerabilities in southern Africa. Agriculture is the most affected sector as 95% of cultivated area is rainfed. This review addressed trends in moisture stress and the impacts on crop production, highlighting adaptation possible strategies to ensure food security in southern Africa. Notable changes in rainfall patterns and deficiencies in soil moisture are estimated and discussed, as well as the impact of rainfall variability on crop production and proposed adaptation strategies in agriculture. Climate moisture index (CMI) was used to assess aridity levels. Southern Africa is described as a climate hotspot due to increasing aridity, low adaptive capacity, underdevelopment and marginalisation. Although crop yields have been increasing due to increases in irrigated area and use of improved seed varieties, they have not been able to meet the food requirements of a growing population, compromising regional food security targets. Most countries in the region depend on international aid to supplement yield deficits. The recurrence of droughts caused by the El Niño Southern Oscillation (ENSO) continue devastating the region, affecting livelihoods, economies and the environment. An example is the 2015/16 ENSO drought that caused the region to call for international aid to feed about 40 million people. In spite of the water scarcity challenges, cereal production continues to increase steadily due to increased investment in irrigated agriculture and improved crop varieties. Given the current and future vulnerability of the agriculture sector in southern Africa, proactive adaptation interventions are important to help farming communities develop resilient systems to adapt to the changes and variability in climate and other stressors.
Article 0 Reads 0 Citations Prospects for Improving Irrigated Agriculture in Southern Africa: Linking Water, Energy and Food Tafadzwanashe Mabhaudhi, Sylvester Mpandeli, Luxon Nhamo, Vi... Published: 19 December 2018
Water, doi: 10.3390/w10121881
DOI See at publisher website ABS Show/hide abstract
Increasing agricultural productivity has always been a prominent feature on the regional agenda due to a high incidence of food and nutrition insecurity. This review assessed the current status of irrigated agriculture in southern Africa from a water–energy–food (WEF) nexus perspective. Gaps and opportunities for improving irrigated agriculture within the context of the WEF nexus were also assessed in terms of the feasible limits to which they can be exploited. Southern Africa faces water scarcity, and climate projections show that member states will face increased physical and/or economic water scarcity by as early as 2025, which will have negative impacts on water, energy and food production. Recurrent droughts experienced across the region reaffirm the sensitive issues of food and energy insecurity as well as water scarcity. Projections of an increasing population within the region indicate increased water, energy and food demand. With agriculture already accounting for about 70% of water withdrawals, increasing the area under irrigation will place additional demand on already strained energy grids and scarce water resources. This poses the question—is increasing irrigated agriculture a solution to improving water access, food security and energy supply? While there are prospects for increasing the area under irrigation and subsequent improvement in agricultural productivity, adopting a WEF nexus approach in doing so would mitigate trade-offs and unintended consequences. Consideration of the WEF nexus in integrated resources planning and management eliminates the possibilities of transferring problems from one sector to other, as it manages synergies and trade-offs. While it is acknowledged that improving water productivity in irrigated agriculture could reduce water and energy use while increasing yield output, there is a need to decide how such savings would then be reallocated. Any intervention to increase the irrigated area should be done in the context of a WEF nexus analytical framework to guide policy and decision-making. Technical planning should evolve around the WEF nexus approach in setting targets, as WEF nexus indicators would reveal the performance and impact of proposed interventions on any of the three WEF nexus components.
Article 0 Reads 1 Citation Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa Sylvester Mpandeli, Dhesigen Naidoo, Tafadzwanashe Mabhaudhi... Published: 19 October 2018
International Journal of Environmental Research and Public Health, doi: 10.3390/ijerph15102306
DOI See at publisher website PubMed View at PubMed ABS Show/hide abstract
Climate change is a complex and cross-cutting problem that needs an integrated and transformative systems approach to respond to the challenge. Current sectoral approaches to climate change adaptation initiatives often create imbalances and retard sustainable development. Regional and international literature on climate change adaptation opportunities and challenges applicable to southern Africa from a water-energy-food (WEF) nexus perspective was reviewed. Specifically, this review highlights climate change impacts on water, energy, and food resources in southern Africa, while exploring mitigation and adaptation opportunities. The review further recommends strategies to develop cross-sectoral sustainable measures aimed at building resilient communities. Regional WEF nexus related institutions and legal frameworks were also reviewed to relate the WEF nexus to policy. Southern Africa is witnessing an increased frequency and intensity in climate change-associated extreme weather events, causing water, food, and energy insecurity. A projected reduction of 20% in annual rainfall by 2080 in southern Africa will only increase the regional socio-economic challenges. This is exacerbating regional resource scarcities and vulnerabilities. It will also have direct and indirect impacts on nutrition, human well-being, and health. Reduced agricultural production, lack of access to clean water, sanitation, and clean, sustainable energy are the major areas of concern. The region is already experiencing an upsurge of vector borne diseases (malaria and dengue fever), and water and food-borne diseases (cholera and diarrhoea). What is clear is that climate change impacts are cross-sectoral and multidimensional, and therefore require cross-sectoral mitigation and adaptation approaches. In this regard, a well-coordinated and integrated WEF nexus approach offers opportunities to build resilient systems, harmonise interventions, and mitigate trade-offs and hence improve sustainability. This would be achieved through greater resource mobilisation and coordination, policy convergence across sectors, and targeting nexus points in the landscape. The WEF nexus approach has potential to increase the resilience of marginalised communities in southern Africa by contributing towards attaining the Sustainable Development Goals (SDGs 1, 2, 3, 6, 7, and 13).
Article 2 Reads 0 Citations Improving the Accuracy of Remotely Sensed Irrigated Areas Using Post-Classification Enhancement Through UAV Capability Luxon Nhamo, Ruben Van Dijk, James Magidi, David Wiberg, Kha... Published: 05 May 2018
Remote Sensing, doi: 10.3390/rs10050712
DOI See at publisher website ABS Show/hide abstract
Although advances in remote sensing have enhanced mapping and monitoring of irrigated areas, producing accurate cropping information through satellite image classification remains elusive due to the complexity of landscapes, changes in reflectance of different land-covers, the remote sensing data selected, and image processing methods used, among others. This study extracted agricultural fields in the former homelands of Venda and Gazankulu in Limpopo Province, South Africa. Landsat 8 imageries for 2015 were used, applying the maximum likelihood supervised classifier to delineate the agricultural fields. The normalized difference vegetation index (NDVI) applied on Landsat imageries on the mapped fields during the dry season (July to August) was used to identify irrigated areas, because years of satellite data analysis suggest that healthy crop conditions during dry seasons are only possible with irrigation. Ground truth points totaling 137 were collected during fieldwork for pre-processing and accuracy assessment. An accuracy of 96% was achieved on the mapped agricultural fields, yet the irrigated area map produced an initial accuracy of only 71%. This study explains and improves the 29% error margin from the irrigated areas. Accuracy was enhanced through post-classification correction (PCC) using 74 post-classification points randomly selected from the 2015 irrigated area map. High resolution aerial photographs of the 74 sample fields were acquired by an unmanned aerial vehicle (UAV) to give a clearer picture of the irrigated fields. The analysis shows that mapped irrigated fields that presented anomalies included abandoned croplands that had green invasive alien species or abandoned fruit plantations that had high NDVI values. The PCC analysis improved irrigated area mapping accuracy from 71% to 95%.
Article 4 Reads 4 Citations The Water-Energy-Food Nexus: Climate Risks and Opportunities in Southern Africa Luxon Nhamo, Bekithemba Ndlela, Charles Nhemachena, Tafadzwa... Published: 27 April 2018
Water, doi: 10.3390/w10050567
DOI See at publisher website ABS Show/hide abstract
The discourse on the need for water, energy, and food security has dominated the development agenda of southern African countries, centred on improving livelihoods, building resilience, and regional integration. About 60% of the population in the Southern African Development Community (SADC) live in rural areas relying mainly on rainfed agriculture, lacking access to clean water and energy, yet the region is endowed with vast natural resources. The water-energy-food (WEF) nexus is a conceptual framework that presents opportunities for greater resource coordination, management, and policy convergence across sectors. This is particularly relevant in the SADC region as resources are transboundary and supports efforts linked to regional integration and inclusive socio-economic development and security. We conducted an appraisal of WEF-related policies and institutions in SADC and identified linkages among them. The present ‘silo’ approach in resource management and allocation, often conducted at the national level, contributes to the region’s failure to meet its development targets, exacerbating its vulnerabilities. The lack of coordination of WEF nexus synergies and trade-offs in planning often threatens the sustainability of development initiatives. We highlighted the importance of the WEF nexus to sustainably address the sectoral coordination of resources through harmonised institutions and policies, as well as setting targets and indicators to direct and monitor nexus developments. We illustrate the significance of the nexus in promoting inclusive development and transforming vulnerable communities into resilient societies. The study recommends a set of integrated assessment models to monitor and evaluate the implementation of WEF nexus targets. Going forward, we propose the adoption of a regional WEF nexus framework.
Top