Please login first
Sylvester Mpandeli   Dr.  Institute, Department or Faculty Head 
Timeline See timeline
Sylvester Mpandeli published an article in February 2019.
Top co-authors See all
Tafadzwanashe Mabhaudhi

34 shared publications

Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa

Amos Madhlopa

28 shared publications

Energy Research Centre, University of Cape Town, South Africa NIGERIA

Luxon Nhamo

13 shared publications

International Water Management Institute (IWMI-SA), 141 Cresswell St, Weavind Park, Silverton 0184, Pretoria, South Africa

Gerhard Backeberg

3 shared publications

Water Research Commission; Pretoria South Africa

Greenwell Matchaya

2 shared publications

International Water Management Institute , Pretoria , South Africa

Publication Record
Distribution of Articles published per year 
(2016 - 2019)
Total number of journals
published in
Article 0 Reads 0 Citations Cereal Production Trends under Climate Change: Impacts and Adaptation Strategies in Southern Africa Luxon Nhamo, Greenwell Mathcaya, Tafadzwanashe Mabhaudhi, Si... Published: 01 February 2019
Agriculture, doi: 10.3390/agriculture9020030
DOI See at publisher website ABS Show/hide abstract
The increasing frequency and intensity of droughts and floods, coupled with increasing temperatures and declining rainfall totals, are exacerbating existing vulnerabilities in southern Africa. Agriculture is the most affected sector as 95% of cultivated area is rainfed. This review addressed trends in moisture stress and the impacts on crop production, highlighting adaptation possible strategies to ensure food security in southern Africa. Notable changes in rainfall patterns and deficiencies in soil moisture are estimated and discussed, as well as the impact of rainfall variability on crop production and proposed adaptation strategies in agriculture. Climate moisture index (CMI) was used to assess aridity levels. Southern Africa is described as a climate hotspot due to increasing aridity, low adaptive capacity, underdevelopment and marginalisation. Although crop yields have been increasing due to increases in irrigated area and use of improved seed varieties, they have not been able to meet the food requirements of a growing population, compromising regional food security targets. Most countries in the region depend on international aid to supplement yield deficits. The recurrence of droughts caused by the El Niño Southern Oscillation (ENSO) continue devastating the region, affecting livelihoods, economies and the environment. An example is the 2015/16 ENSO drought that caused the region to call for international aid to feed about 40 million people. In spite of the water scarcity challenges, cereal production continues to increase steadily due to increased investment in irrigated agriculture and improved crop varieties. Given the current and future vulnerability of the agriculture sector in southern Africa, proactive adaptation interventions are important to help farming communities develop resilient systems to adapt to the changes and variability in climate and other stressors.
Article 0 Reads 0 Citations Prospects for Improving Irrigated Agriculture in Southern Africa: Linking Water, Energy and Food Tafadzwanashe Mabhaudhi, Sylvester Mpandeli, Luxon Nhamo, Vi... Published: 19 December 2018
Water, doi: 10.3390/w10121881
DOI See at publisher website ABS Show/hide abstract
Increasing agricultural productivity has always been a prominent feature on the regional agenda due to a high incidence of food and nutrition insecurity. This review assessed the current status of irrigated agriculture in southern Africa from a water–energy–food (WEF) nexus perspective. Gaps and opportunities for improving irrigated agriculture within the context of the WEF nexus were also assessed in terms of the feasible limits to which they can be exploited. Southern Africa faces water scarcity, and climate projections show that member states will face increased physical and/or economic water scarcity by as early as 2025, which will have negative impacts on water, energy and food production. Recurrent droughts experienced across the region reaffirm the sensitive issues of food and energy insecurity as well as water scarcity. Projections of an increasing population within the region indicate increased water, energy and food demand. With agriculture already accounting for about 70% of water withdrawals, increasing the area under irrigation will place additional demand on already strained energy grids and scarce water resources. This poses the question—is increasing irrigated agriculture a solution to improving water access, food security and energy supply? While there are prospects for increasing the area under irrigation and subsequent improvement in agricultural productivity, adopting a WEF nexus approach in doing so would mitigate trade-offs and unintended consequences. Consideration of the WEF nexus in integrated resources planning and management eliminates the possibilities of transferring problems from one sector to other, as it manages synergies and trade-offs. While it is acknowledged that improving water productivity in irrigated agriculture could reduce water and energy use while increasing yield output, there is a need to decide how such savings would then be reallocated. Any intervention to increase the irrigated area should be done in the context of a WEF nexus analytical framework to guide policy and decision-making. Technical planning should evolve around the WEF nexus approach in setting targets, as WEF nexus indicators would reveal the performance and impact of proposed interventions on any of the three WEF nexus components.
Article 0 Reads 1 Citation Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa Sylvester Mpandeli, Dhesigen Naidoo, Tafadzwanashe Mabhaudhi... Published: 19 October 2018
International Journal of Environmental Research and Public Health, doi: 10.3390/ijerph15102306
DOI See at publisher website PubMed View at PubMed ABS Show/hide abstract
Climate change is a complex and cross-cutting problem that needs an integrated and transformative systems approach to respond to the challenge. Current sectoral approaches to climate change adaptation initiatives often create imbalances and retard sustainable development. Regional and international literature on climate change adaptation opportunities and challenges applicable to southern Africa from a water-energy-food (WEF) nexus perspective was reviewed. Specifically, this review highlights climate change impacts on water, energy, and food resources in southern Africa, while exploring mitigation and adaptation opportunities. The review further recommends strategies to develop cross-sectoral sustainable measures aimed at building resilient communities. Regional WEF nexus related institutions and legal frameworks were also reviewed to relate the WEF nexus to policy. Southern Africa is witnessing an increased frequency and intensity in climate change-associated extreme weather events, causing water, food, and energy insecurity. A projected reduction of 20% in annual rainfall by 2080 in southern Africa will only increase the regional socio-economic challenges. This is exacerbating regional resource scarcities and vulnerabilities. It will also have direct and indirect impacts on nutrition, human well-being, and health. Reduced agricultural production, lack of access to clean water, sanitation, and clean, sustainable energy are the major areas of concern. The region is already experiencing an upsurge of vector borne diseases (malaria and dengue fever), and water and food-borne diseases (cholera and diarrhoea). What is clear is that climate change impacts are cross-sectoral and multidimensional, and therefore require cross-sectoral mitigation and adaptation approaches. In this regard, a well-coordinated and integrated WEF nexus approach offers opportunities to build resilient systems, harmonise interventions, and mitigate trade-offs and hence improve sustainability. This would be achieved through greater resource mobilisation and coordination, policy convergence across sectors, and targeting nexus points in the landscape. The WEF nexus approach has potential to increase the resilience of marginalised communities in southern Africa by contributing towards attaining the Sustainable Development Goals (SDGs 1, 2, 3, 6, 7, and 13).
Article 4 Reads 4 Citations The Water-Energy-Food Nexus: Climate Risks and Opportunities in Southern Africa Luxon Nhamo, Bekithemba Ndlela, Charles Nhemachena, Tafadzwa... Published: 27 April 2018
Water, doi: 10.3390/w10050567
DOI See at publisher website ABS Show/hide abstract
The discourse on the need for water, energy, and food security has dominated the development agenda of southern African countries, centred on improving livelihoods, building resilience, and regional integration. About 60% of the population in the Southern African Development Community (SADC) live in rural areas relying mainly on rainfed agriculture, lacking access to clean water and energy, yet the region is endowed with vast natural resources. The water-energy-food (WEF) nexus is a conceptual framework that presents opportunities for greater resource coordination, management, and policy convergence across sectors. This is particularly relevant in the SADC region as resources are transboundary and supports efforts linked to regional integration and inclusive socio-economic development and security. We conducted an appraisal of WEF-related policies and institutions in SADC and identified linkages among them. The present ‘silo’ approach in resource management and allocation, often conducted at the national level, contributes to the region’s failure to meet its development targets, exacerbating its vulnerabilities. The lack of coordination of WEF nexus synergies and trade-offs in planning often threatens the sustainability of development initiatives. We highlighted the importance of the WEF nexus to sustainably address the sectoral coordination of resources through harmonised institutions and policies, as well as setting targets and indicators to direct and monitor nexus developments. We illustrate the significance of the nexus in promoting inclusive development and transforming vulnerable communities into resilient societies. The study recommends a set of integrated assessment models to monitor and evaluate the implementation of WEF nexus targets. Going forward, we propose the adoption of a regional WEF nexus framework.
Article 6 Reads 7 Citations Southern Africa’s Water–Energy Nexus: Towards Regional Integration and Development Tafadzwanashe Mabhaudhi, Sylvester Mpandeli, Amos Madhlopa, ... Published: 01 June 2016
Water, doi: 10.3390/w8060235
DOI See at publisher website ABS Show/hide abstract
The Southern African Development Community’s (SADC) water and energy sectors are under increasing pressure due to population growth and agricultural and industrial development. Climate change is also negatively impacting on the region’s water and energy resources. As the majority of SADC’s population lives in poverty, regional development and integration are underpinned by water and energy security as the watercourses in the region are transboundary in nature. This paper reviews the region’s water and energy resources and recommends policies based on the water–energy nexus approach. This is achieved by reviewing literature on water and energy resources as well as policy issues. Water resources governance provides a strong case to create a water–energy nexus platform to support regional planning and integration as SADC countries share similar climatic and hydrological conditions. However, there has been a gap between water and energy sector planning in terms of policy alignment and technical convergence. These challenges hinder national policies on delivering economic and social development goals, as well as constraining the regional goal of greater integration. Regional objectives on sustainable energy and access to clean water for all can only be achieved through the recognition of the water–energy nexus, championed in an integrated and sustainable manner. A coordinated regional water–energy nexus approach stimulates economic growth, alleviates poverty and reduces high unemployment rates. The shared nature of water and energy resources requires far more transboundary water–energy nexus studies to be done in the context of regional integration and policy formulation.