Please login first
Marta Vázquez     Other 
Timeline See timeline
Marta Vázquez published an article in December 2018.
Top co-authors See all
L. Gimeno

134 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Raquel Nieto

120 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Alexandre M. Ramos

58 shared publications

Instituto Dom Luiz (IDL)

Anita Drumond

57 shared publications

Environmental Physics Laboratory (UVIGO-CSIC Associated Unit), Universidade de Vigo, Ourense 32004, Spain

Iago Algarra

4 shared publications

EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, Ourense, Galicia, Spain

13
Publications
117
Reads
34
Downloads
70
Citations
Publication Record
Distribution of Articles published per year 
(2014 - 2018)
Total number of journals
published in
 
9
 
Publications See all
Article 1 Read 0 Citations Atmospheric Rivers over the Arctic: Lagrangian Characterisation of Their Moisture Sources Marta Vázquez, Iago Algarra, Jorge Eiras-Barca, Alexandre M.... Published: 26 December 2018
Water, doi: 10.3390/w11010041
DOI See at publisher website ABS Show/hide abstract
In recent years, the Arctic has become a subject of special interest due to the drastic effect of climate change over the region. Despite that there are several mechanisms that influence the Arctic region; some recent studies have suggested significant influences of moisture transport over the observed loss of sea ice. Moisture transport can affect the region in different ways: direct precipitation over the region, radiative effect from the cloud cover and through the release of latent heat. Atmospheric rivers (ARs) represent one of the main events involved in moisture transport from the tropics to the mid-latitudes and despite having been shown especially relevant on the northward advection, their effect over the Arctic has not been deeply investigated. The aim of this work was to establish the groundwork for future studies about the effect of ARs linked to moisture transport over the Arctic region. For this purpose, an automated algorithm was used to identify regions of maximum AR occurrence over the Arctic. This was done by analysing the number of AR detections every month over a band of 10° of latitude centred on 60° N. The Lagrangian model FLEXPART was used to find the areas where the ARs take their moisture to the Arctic. Using this model, the anomalous moisture contribution to these baroclinic structures was analysed taking into account only the dates of AR occurrence. From the results, it appears that the main moisture sources for AR events extend over the North Atlantic and North Pacific oceans; moreover, the local input of moisture over the region of maximum AR occurrence seems to be especially relevant. In general terms, moisture comes from major evaporative areas over the western part of the oceanic regions in the band between 30° and 40° N for most months in the year, showing a continental origin in the summer months. This behaviour agrees with the climatological moisture transport into the Arctic determined in previous studies. However, in special association with AR events, an intensification of local moisture uptake is observed over the area of maximum AR activity and nearby. The study of the origin of this moisture and associated anomalies for Arctic ARs is an important step in the analysis of the effect of these structures on the Arctic environment.
Article 0 Reads 0 Citations The role of moisture transport for precipitation on the interannual and inter-daily fluctuations of the arctic sea ice e... Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, Luis Gimeno Published: 11 September 2018
Earth System Dynamics Discussions, doi: 10.5194/esd-2018-59
DOI See at publisher website ABS Show/hide abstract
By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore i) whether the MTP from the main moisture sources for the Arctic region is linked with interannual fluctuations in the extent of Arctic Sea ice superimposed on its decline and ii) the role of extreme MTP events in the inter-daily change of the Arctic Sea Ice Extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest 1) that ice-melting at the scale of interannual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter, and a decrease in spring and, 2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer and autumn; in these 3 seasons it therefore contributes to Arctic Sea Ice Melting. These patterns differ sharply from that linked to the decline, especially in summer when the opposite trend applies.
Article 7 Reads 5 Citations A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, Luis Gimeno Published: 23 May 2018
Earth System Dynamics, doi: 10.5194/esd-9-611-2018
DOI See at publisher website ABS Show/hide abstract
In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.
Article 2 Reads 0 Citations The perfect pattern of moisture transport for precipitation for Arctic sea ice melting Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, Luis Gimeno Published: 20 December 2017
Earth System Dynamics Discussions, doi: 10.5194/esd-2017-122
DOI See at publisher website ABS Show/hide abstract
We have identified the patterns of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains, which better fit with sea ice decline. For this purpose, we studied the different patterns of moisture transport for the case of high/low Arctic sea ice (ASI) extension linked to periods before/after the main change point (CP) in the extension of sea ice. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is not only statistically significant but also consistent with Eulerian fluxes diagnosis, changes in the frequency of circulation types, and known mechanisms of the effects of snowfall or rainfall on ice in the Arctic. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognized in relation to enhanced Arctic precipitation throughout the year in the present climate.
CONFERENCE-ARTICLE 33 Reads 1 Citation <strong>Patterns of atmospheric moisture transport linked to Southern Ocean Sea ice coverage changes</strong> Raquel Nieto, Rosmeri da Rocha, Luis Gimeno-Sotelo, Marta Vá... Published: 10 November 2017
Proceedings of First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04877
DOI See at publisher website ABS Show/hide abstract

Moisture sources identification and Sea Ice Concentration (SIC) were calculated for the period 1980-2016 for the Southern Ocean Sea. Five sectors of the Southern Ocean Sea (King Hakon VII, East Antarctic, Ross/Amundsen, Amundsen and Bellingshausen, Weddell) were selected to calculate their moisture sources. The results show that the most important moisture sources (calculated as positive values of Evaporation minus Precipitation, E-P>0) for these five seas come from extratropical latitudes in the storm track trajectories. The main moisture sources and affected regional seas are: Southern Australia (SAUS) moisture source which affect mainly Ross/Amundsen and Amundsen and Bellingshausen seas; the Atlantic Ocean is the main source of moisture for Weddell and King Hakon VII; and the Pacific Ocean provides moisture to Ross/Amundsen, Weddell and Amundsen and Bellingshausen seas. For most of these seas it was identified positive trends of E-P>0 anomalies, while negative trends were identified only for the SAUS moisture source to Amundsen and Bellingshausen Sea. In terms of SIC, for the whole Antarctic the total anomalies are increasing, but no breaking points in this time serie were detected. Preliminary results also indicate some areas, which do not coincide exactly with the limit of the regional seas, where the increase of Sea Ice Extension (SIE) is statistically significant.

CONFERENCE-ARTICLE 28 Reads 0 Citations The origin of moisture feeding up Atmospheric Rivers over the Arctic Marta Vázquez, Karina Pereira, Raquel Nieto, Luis Gimeno Published: 05 November 2017
Proceedings of First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04829
DOI See at publisher website ABS Show/hide abstract

The Arctic system is one of the most vulnerable region under climate change conditions and it has suffered important changes on last decades. Several recent studies have suggested the influence of moisture transport in the observed sea ice loss on this region. Changes in moisture transport could affect the arctic region by changing the cloud cover, by affecting river discharge or by direct effect of precipitation over the sea ice, for example. Atmospheric rives (ARs) represent one of the main mechanism of global moisture transport, being especially relevant on the connection between lower and higher latitudes. Despite this importance, the influence of ARs over the Arctic system has not been widely study.

The objective of this is work is to establish a first step on the study of the influence of the occurrence of ARs over the polar region. For this purpose, the lagrangian model FLEXPART was used to analyze moisture sources for those regions of maximum occurrence of ARs for the period 1994-2014 in order to analyze the origin of moisture transported by these meteorological structures. The location of ARs affecting the Arctic was realized using an automated algorithm and the region of maximum occurrence was defined taking into account the number of ARs detected for August and September (when sea ice is minimum over the Arctic ocean) over a band of 10° of latitude centered on 60°N. For these regions and considering those days of ARs occurrence, the anomalous moisture sources was defined in relation with mean situation for the complete period.

From the results, main moisture sources for ARs events extends over the North Atlantic and North Pacific oceans, moreover local input of moisture over the region of maximum ARs occurrence seems to be especially relevant. It is interesting to highlight the moisture uptake from Eastern Asia for the month of August. In general it could be conclude that, for ARs events the moisture uptake around and over the maximum occurrence area highly increase becoming relevant sources of moisture feeding up the event.

The location of the origin of the moisture that feed up Arctic ARs is an important step forward on the study of the influence of these structures over the region. Further analysis regarding the contribution of moisture from ARs over the region should be realized in order to complete the relation ARs-sea ice; being this study suitable for a future work.

Top