Please login first
Home > Feed > Timeline
Timeline of Marta Vázquez

2018
Dec
26
Published new article




Article

Atmospheric Rivers over the Arctic: Lagrangian Characterisation of Their Moisture Sources

Published: 26 December 2018 by MDPI in Water

doi: 10.3390/w11010041

In recent years, the Arctic has become a subject of special interest due to the drastic effect of climate change over the region. Despite that there are several mechanisms that influence the Arctic region; some recent studies have suggested significant influences of moisture transport over the observed loss of sea ice. Moisture transport can affect the region in different ways: direct precipitation over the region, radiative effect from the cloud cover and through the release of latent heat. Atmospheric rivers (ARs) represent one of the main events involved in moisture transport from the tropics to the mid-latitudes and despite having been shown especially relevant on the northward advection, their effect over the Arctic has not been deeply investigated. The aim of this work was to establish the groundwork for future studies about the effect of ARs linked to moisture transport over the Arctic region. For this purpose, an automated algorithm was used to identify regions of maximum AR occurrence over the Arctic. This was done by analysing the number of AR detections every month over a band of 10° of latitude centred on 60° N. The Lagrangian model FLEXPART was used to find the areas where the ARs take their moisture to the Arctic. Using this model, the anomalous moisture contribution to these baroclinic structures was analysed taking into account only the dates of AR occurrence. From the results, it appears that the main moisture sources for AR events extend over the North Atlantic and North Pacific oceans; moreover, the local input of moisture over the region of maximum AR occurrence seems to be especially relevant. In general terms, moisture comes from major evaporative areas over the western part of the oceanic regions in the band between 30° and 40° N for most months in the year, showing a continental origin in the summer months. This behaviour agrees with the climatological moisture transport into the Arctic determined in previous studies. However, in special association with AR events, an intensification of local moisture uptake is observed over the area of maximum AR activity and nearby. The study of the origin of this moisture and associated anomalies for Arctic ARs is an important step in the analysis of the effect of these structures on the Arctic environment.

1 Reads | 0 Citations
2018
Sep
11
Published new article




Article

The role of moisture transport for precipitation on the interannual and inter-daily fluctuations of the arctic sea ice e...

Published: 11 September 2018 by Copernicus GmbH in Earth System Dynamics Discussions

doi: 10.5194/esd-2018-59

By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore i) whether the MTP from the main moisture sources for the Arctic region is linked with interannual fluctuations in the extent of Arctic Sea ice superimposed on its decline and ii) the role of extreme MTP events in the inter-daily change of the Arctic Sea Ice Extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest 1) that ice-melting at the scale of interannual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter, and a decrease in spring and, 2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer and autumn; in these 3 seasons it therefore contributes to Arctic Sea Ice Melting. These patterns differ sharply from that linked to the decline, especially in summer when the opposite trend applies.

0 Reads | 0 Citations
2018
May
23
Published new article




Article

A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent

Published: 23 May 2018 by Copernicus GmbH in Earth System Dynamics

doi: 10.5194/esd-9-611-2018

In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.

7 Reads | 5 Citations
2017
Dec
20
Published new article




Article

The perfect pattern of moisture transport for precipitation for Arctic sea ice melting

Published: 20 December 2017 by Copernicus GmbH in Earth System Dynamics Discussions

doi: 10.5194/esd-2017-122

We have identified the patterns of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains, which better fit with sea ice decline. For this purpose, we studied the different patterns of moisture transport for the case of high/low Arctic sea ice (ASI) extension linked to periods before/after the main change point (CP) in the extension of sea ice. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is not only statistically significant but also consistent with Eulerian fluxes diagnosis, changes in the frequency of circulation types, and known mechanisms of the effects of snowfall or rainfall on ice in the Arctic. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognized in relation to enhanced Arctic precipitation throughout the year in the present climate.

2 Reads | 0 Citations
2017
Nov
10
Published new article






<strong>Patterns of atmospheric moisture transport linked to Southern Ocean Sea ice coverage changes</strong>

Published: 10 November 2017 by MDPI AG in Proceedings of First International Electronic Conference on the Hydrological Cycle

doi: 10.3390/CHyCle-2017-04877

<p>Moisture sources identification and Sea Ice Concentration (SIC) were calculated for the period 1980-2016 for the Southern Ocean Sea. Five sectors of the Southern Ocean Sea (King Hakon VII, East Antarctic, Ross/Amundsen, Amundsen and Bellingshausen, Weddell) were selected to calculate their moisture sources. The results show that the most important moisture sources (calculated as positive values of Evaporation minus Precipitation, E-P&gt;0) for these five seas come from extratropical latitudes in the storm track trajectories. The main moisture sources and affected regional seas are: Southern Australia (SAUS) moisture source which affect mainly Ross/Amundsen and Amundsen and Bellingshausen seas; the Atlantic Ocean is the main source of moisture for Weddell and King Hakon VII; and the Pacific Ocean provides moisture to Ross/Amundsen, Weddell and Amundsen and Bellingshausen seas. For most of these seas it was identified positive trends of E-P&gt;0 anomalies, while negative trends were identified only for the SAUS moisture source to Amundsen and Bellingshausen Sea. In terms of SIC, for the whole Antarctic the total anomalies are increasing, but no breaking points in this time serie were detected. Preliminary results also indicate some areas, which do not coincide exactly with the limit of the regional seas, where the increase of Sea Ice Extension (SIE) is statistically significant.</p>

33 Reads | 1 Citations
2017
Nov
05
Published new article






The origin of moisture feeding up Atmospheric Rivers over the Arctic

Published: 05 November 2017 by MDPI AG in Proceedings of First International Electronic Conference on the Hydrological Cycle

doi: 10.3390/CHyCle-2017-04829

<p>The Arctic system is one of the most vulnerable region under climate change conditions and it has suffered important changes on last decades. Several recent studies have suggested the influence of moisture transport in the observed sea ice loss on this region. Changes in moisture transport could affect the arctic region by changing the cloud cover, by affecting river discharge or by direct effect of precipitation over the sea ice, for example. Atmospheric rives (ARs) represent one of the main mechanism of global moisture transport, being especially relevant on the connection between lower and higher latitudes. Despite this importance, the influence of ARs over the Arctic system has not been widely study.</p> <p>The objective of this is work is to establish a first step on the study of the influence of the occurrence of ARs over the polar region. For this purpose, the lagrangian model FLEXPART was used to analyze moisture sources for those regions of maximum occurrence of ARs for the period 1994-2014 in order to analyze the origin of moisture transported by these meteorological structures. The location of ARs affecting the Arctic was realized using an automated algorithm and the region of maximum occurrence was defined taking into account the number of ARs detected for August and September (when sea ice is minimum over the Arctic ocean) over a band of 10&deg; of latitude centered on 60&deg;N. For these regions and considering those days of ARs occurrence, the anomalous moisture sources was defined in relation with mean situation for the complete period.</p> <p>From the results, main moisture sources for ARs events extends over the North Atlantic and North Pacific oceans, moreover local input of moisture over the region of maximum ARs occurrence seems to be especially relevant. <span>It is interesting to highlight the moisture uptake from Eastern Asia for the month of August</span>. In general it could be conclude that, for ARs events the moisture uptake around and over the maximum occurrence area highly increase becoming relevant sources of moisture feeding up the event.</p> <p>The location of the origin of the moisture that feed up Arctic ARs is an important step forward on the study of the influence of these structures over the region. Further analysis regarding the contribution of moisture from ARs over the region should be realized in order to complete the relation ARs-sea ice; being this study suitable for a future work.</p>

28 Reads | 0 Citations
2017
Feb
07
Published new article




Article

Extreme Sea Ice Loss over the Arctic: An Analysis Based on Anomalous Moisture Transport

Published: 07 February 2017 by MDPI in Atmosphere

doi: 10.3390/atmos8020032

The Arctic system has experienced in recent times an extreme reduction in the extent of its sea ice. The years 2007 and 2012 in particular showed maxima in the loss of sea ice. It has been suggested that such a rapid decrease has important implications for climate not only over the system itself but also globally. Understanding the causes of this sea ice loss is key to analysing how future changes related to climate change can affect the Arctic system. For this purpose, we applied the Lagrangian FLEXible PARTicle dispersion (FLEXPART) model to study the anomalous transport of moisture for 2006/2007 and 2011/2012 in order to assess the implications for the sea ice. We used the model results to analyse the variation in the sources of moisture for the system (backward analysis), as well as how the moisture supply from these sources differs (forward analysis) during these years. The results indicate an anomalous transport of moisture for both years. However, the pattern differs between events, and the anomalous moisture supply varies both in intensity and spatial distribution for all sources.

0 Reads | 5 Citations
2016
Nov
27
Published new article




Article

Moisture transport into the Arctic: Source-receptor relationships and the roles of atmospheric circulation and evaporati...

Published: 27 November 2016 by Wiley in Journal of Geophysical Research: Atmospheres

doi: 10.1002/2016jd025400

Hydrological processes play a key role in the Arctic, as well as being an important part of the response of this region to climate change. The origin of the moisture arriving (and then precipitating) in the Arctic is a crucial question in our understanding of the Arctic hydrological cycle. In an attempt to answer this, the present study uses the Lagrangian diagnosis model FLEXPART to localize the main sources of moisture for the Arctic region, to analyze their variability and their contribution to precipitation, and to consider the implications of any changes in the transport of moisture from particular sources within the system. From this analysis, four major moisture sources appear as the most important moisture supplies into the system: the subtropical and southern extratropical Pacific and Atlantic oceans, North America, and Siberia. Oceanic sources play an important role throughout the year, whereas continental ones only take effect in summer. The sink areas associated with each source have been shown to be moderately influenced by changes in atmospheric circulation, mainly associated with the East Atlantic (EA) pattern for the Atlantic source and related to West Pacific (WP) and Pacific/North American (PNA) teleconnection patterns for the Pacific one. On the other hand, the variability over the sinks does not seem to be significantly related to changes in evaporation at an interannual scale.

0 Reads | 8 Citations
2016
Jul
15
Published new article






Extreme Sea Ice Loss over the Arctic: An Analysis Based on Anomalous Moisture Transport

Published: 15 July 2016 by MDPI AG in Proceedings of The 1st International Electronic Conference on Atmospheric Sciences

doi: 10.3390/ecas2016-D003

<p>Recently, the Arctic system has been suffering an extreme reduction in its sea ice extension. 2007 and 2012 represent those years showing the maximum sea ice loss. This rapid decrease has been suggested to have important implications on climate not only over the system itself but also globally. Understanding the causes of this sea ice loss is key to analyzing how future changes related to climate change can affect the Arctic system and the global system. For this purpose, we have applied the Lagrangian model FLEXPART to study the anomalous transport of moisture for these years and to analyze the implications on the sea ice it may produce. Throughout this model, we will analyze the variation in the sources of moisture for the system (backward analysis), and how the moisture supply from these sources is affected (forward analysis). From the results an anomalous transport of moisture have been proved to occur for both years. However, the pattern is different for each event, being the anomalous moisture supply different in both intensity and spatial distribution from every source.</p>

11 Reads | 0 Citations
2016
Jul
15
Published new article






An Analysis of the Water Cycle in the Sahel through a Lagrangian Perspective

Published: 15 July 2016 by MDPI AG in Proceedings of The 1st International Electronic Conference on Atmospheric Sciences

doi: 10.3390/ecas2016-D004

<p>The Sahelian region is located southern the Sahara Desert and the wet tropical belt of central Africa, and it is affected by a monsoonal regime. It is well known that the Sahel is one of the most vulnerable areas due its annual strong climatic variations. In essence, to bring precipitation over a region, the atmosphere needs moisture to condense. So, it is necessary to know where the supply of moisture that precipitates over the Sahel come from to understand the rainfall variability. In a previous paper by Nieto et al. [1] they defined, using a lagrangian method of diagnosis, the sources of moisture that reach the Sahel (10&deg;&ndash;20&deg; N; 20&deg; E&ndash;18&deg; W) calculating changes in the specific humidity along trajectories of a lot of atmospheric-particles. The analysis was done using the observational data from the ECMWF for a 5-year period (2000&ndash;2004), but the shorter time period used impeded the study of interannual variability or possible relationships with modes of climate variability as ENSO or NAO. Based in those lacks in this following paper we provide an extensively revisited analysis to determine and analyze in an improved way the sources of moisture for the Sahel. In order to carry out this aim, we have used here: (a) a longer climatological period of time from 1980 to 2012 (three decades) to redefine the sources of moisture; (b) the nowadays best-considered database to reproduce the atmospheric branch of the hydrological cycle: the ERA-Interim Reanalysis data to track atmospheric moisture changes along trajectories; (c) a definition of the sources using a moving threshold in the field of E-P for annual, seasonal and monthly scales. This new extended and improved data allowed us to redo, among others, the time series of E-P day by day calculated backward for the moisture over the Sahel area and integrated over the moisture sources determined in the previous steps. But now the most important is the possibility to analyze the relationship with between the amount of the moisture over the sources and the field of real precipitation over the Sahel, and to have concrete outcomes about the modulation by the main patterns of climate variability on the sources as ENSO, NAO and the local West African Monsoon (WAM).</p>

24 Reads | 0 Citations
2016
Jul
15
Published new article






Analysis of Changes on Moisture Sources Contributions for Arctic Region in a FutureClimate Scenario Using GFDL/CM3 Model

Published: 15 July 2016 by MDPI AG in Proceedings of The 1st International Electronic Conference on Atmospheric Sciences

doi: 10.3390/ecas2016-A007

<p>The IPCC Fifth Assessment Report suggests that the projected increase in the global temperature in future scenarios could cause different impacts in different regions of the world. For the Polar Regions the global models are being adapted to measure these changes, but the preliminary results indicate large heating for the Arctic region. The changes on Arctic region are not a problem just for a future climate: the Arctic amplification, the decrease on Arctic sea ice extent and on snow cover extent is a present concern for climatologists. Studies suggest a link between Arctic changes and mid-latitude weather, as the changes on Arctic Region where observed accompanied by changes in other regions of the world, especially in the Northern Hemisphere mid-latitude. Some mechanisms are proposed to explain this link, and one of then is related to changes in the atmospheric moisture transport from middle latitudes. Recent studies have shown that the Mediterranean Sea, North Atlantic Ocean and North Pacific Ocean appear as the main regions that contribute as moisture sources to the Arctic Region. The objective of this work is to use the output of GFDL/CM3 Model for 2046&ndash;2075 and 2070&ndash;2099 periods to identify the regions of the main change on moisture sources that contributes to the Arctic Region in a future scenario (RCP4.5) compared to a present climate (1980&ndash;2005). For both future periods analysed, the results suggest that the contribution for Arctic moisture by the regions located on North Atlantic Ocean, North Africa and Middle East enhanced. This may indicate an increase in moisture transport from mid-latitude to Arctic that could lead to several changes in Arctic climate: warming, decrease on sea ice extent and on snow cover.</p>

9 Reads | 0 Citations
2015
May
01
Published new article




Article

Arctic moisture source for Eurasian snow cover variations in autumn

Published: 01 May 2015 by IOP Publishing in Environmental Research Letters

doi: 10.1088/1748-9326/10/5/054015

0 Reads | 25 Citations
2014
Mar
05
Published new article




Article

Atmospheric rivers: a mini-review

Published: 05 March 2014 by Frontiers Media SA in Frontiers in Earth Science

doi: 10.3389/feart.2014.00002

Atmospheric rivers (ARs) are narrow regions responsible for the majority of the poleward water vapour transport across the midlatitudes. They are characterized by high water vapour content and strong low level winds, and form a part of the broader warm conveyor belt of extratropical cyclones. Although the meridional water vapour transport within ARs is critical for water resources, ARs can also cause disastrous floods especially when encountering mountainous terrain. They were labelled as atmospheric rivers in the 1990s, and have since become a well-studied feature of the midlatitude climate. We briefly review the conceptual model, the methods used to identify them, their main climatological characteristics, their impacts, the predictive ability of numerical weather prediction models, their relationship with large-scale ocean-atmosphere dynamics, possible changes under future climates, and some future challenges.

2 Reads | 32 Citations
Top