Please login first
Rogert Sorí   Dr.  Post Doctoral Researcher 
Timeline See timeline
Rogert Sorí published an article in October 2018.
Top co-authors See all
Luis Gimeno

153 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Raquel Nieto

97 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Anita Drumond

40 shared publications

EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

Ezzat Raeisi

22 shared publications

Department of Geology, Faculty of Sciences, Shiraz University, 71946-84695 Shiraz, Iran

Jose A. Marengo

17 shared publications

CEMADEN-National Center for Monitoring and Early Warning of Natural Disasters, Brazil

Publication Record
Distribution of Articles published per year 
(2016 - 2018)
Total number of journals
published in
Publications See all
Article 1 Read 0 Citations The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology Mojtaba Heydarizad, Ezzat Raeisi, Rogert Sori, Luis Gimeno, ... Published: 31 October 2018
Water, doi: 10.3390/w10111550
DOI See at publisher website ABS Show/hide abstract
Iran faces climate disparities due to extreme topographic anomalies, the Caspian Sea and the Persian Gulf water bodies, influences from diverse air masses and moisture sources, and its considerable area. FLEXPART model has been utilized to determine the main marine and continental moisture sources for south-central (Shiraz box) and northeastern (Mashhad box) parts of Iran. The marine moisture sources directly influenced extreme drought and wet conditions in Shiraz and Mashhad boxes during the wet period, while no correlation was observed during the dry period. In addition to local components, extreme drought and wet conditions have also been influenced by the climatic teleconnections. Extreme drought conditions mainly occurred during the La Niña phase, while wet conditions mainly occurred during the El Niño phase. Scrutinizing the effect of marine moisture sources on the hydrology of water resources demonstrated that the moisture contribution from the Arabian Sea directly influenced the discharges of Chenar-rahdar (in the Shiraz box) and Kardeh (in the Mashhad box) rivers during the wet period. However, the Red Sea inversely correlated with the discharges of both rivers during the dry period. Hydrogeologists, hydrologists, and meteorologists can utilize the outputs of this survey to develop climatology and hydrology models in the future.
Article 1 Read 1 Citation The Identification of Iran’s Moisture Sources Using a Lagrangian Particle Dispersion Model Mojtaba Heydarizad, Ezzat Raeisi, Rogert Sori, Luis Gimeno Published: 17 October 2018
Atmosphere, doi: 10.3390/atmos9100408
DOI See at publisher website ABS Show/hide abstract
Iran has faced many water shortage crises in the past. Iran’s moisture sources for precipitation were identified by Lagrangian approach using the FLEXible PARTicle dispersion model (FLEXPART) v9.0 model. The results demonstrate that Iran receives its moisture from both continental and oceanic sources. During the wet season, moisture uptake from the Arabian Sea, the Persian Gulf, and the Mediterranean Sea is dominant, while during the dry season, the role of the Red Sea, the Caspian Sea, and the Persian Gulf is intensified. Studying drought conditions by comparing 1-month, 6-month, and 12-month standardized precipitation index (SPI) with (E-P) values of oceanic and continental moisture sources (E stands for the evaporation and P the precipitation) using multiregression model demonstrates that among oceanic sources the Arabian Sea, the Persian Gulf, the Mediterranean Sea, and the Indian Ocean affect SPI values and among continental sources, moisture from bare grounds and cultivated lands influences SPI values during wet season. However, no correlation exists between oceanic and continental (E-P) and SPI values during the dry season. The results obtained by this study can be used by meteorologists and hydrology scientists for future water management programmes in Iran.
Article 1 Read 3 Citations The Atmospheric Branch of the Hydrological Cycle over the Negro and Madeira River Basins in the Amazon Region Rogert Sorí, José A. Marengo, Raquel Nieto, Anita Drumond, L... Published: 05 June 2018
Water, doi: 10.3390/w10060738
DOI See at publisher website ABS Show/hide abstract
The Amazon region, in South America, contains the largest rainforest and biodiversity in the world, and plays an important role in the regional and global hydrological cycle. In the present study, we identified the main sources of moisture of two subbasins of the Amazon River Basin, the Negro and Madeira River Basins respectively. The source-sink relationships of atmospheric moisture are investigated. The analysis is performed for the period from 1980–2016. The results confirm two main oceanic moisture sources for both basins, i.e., oceanic regions in the Tropical North and South Atlantic oceans. On the continents are, the Negro River Basin itself, and nearby regions to the northeast. For the Madeira River Basin, the most important continental sources are itself, and surrounding regions of the South American continent. Forward-trajectory analysis of air masses over the source regions is used to compute the moisture contribution to precipitation over basins. Oceanic (continental) sources play the most important role in the Negro River Basin (Madeira River Basin). The moisture contribution from the Tropical North Atlantic region modulates the onset and demise of the rainy season in the Negro River Basin; while the moisture contribution from the rest of the Amazon River Basin, the Madeira Basin itself, and Tropical South America leads to the onset of the rainy season in the Madeira River Basin. These regions also played the most important role in decreasing the moisture supply during most severe dry episodes in both basins. During ‘’El Niño’’, generally occurs a reduction (increase) of the moisture contribution to the Negro River Basin (Madeira River Basin; mainly from April to August) from almost all the sources, causing a decrease in the precipitation. Generally, the contrary occurs during ‘’La Niña’’.
CONFERENCE-ARTICLE 16 Reads 0 Citations <strong>Drought and </strong><strong>wet episodes in Amazonia: the role of atmospheric moisture transport</strong> Rogert Sorí, José Marengo, Raquel Nieto, Anita Drumond, Luis... Published: 06 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04846
DOI See at publisher website ABS Show/hide abstract

The Amazon River basin (ARB) in Sud-America contains the world largest rainforest and biodiversity and plays an important role in the regional and global hydrological cycle. It consist of several sub-basins as the Negro River basin (NRB) in the north and the Madeira River basin (MRB) to the south, both considered of utmost importance in the Amazonia for the Amazon River. The precipitation annual cycle in both basins experiences an opposite annual cycle and as a consequence their contributions to the Amazon River are lagged in time. Here we utilized the Standardized Precipitation Index (SPEI) to identify drought and wet conditions in the NRB and MRB along the period 1980-2016. This index has the advantages over other index because considers the effect of the Atmospheric Evaporation Demand (AED) on drought severity. Besides, the Lagrangian dispersion model FLEXPART v9.0 was used to track backward in time air masses residing over the basins and to calculate along the trajectories the budget of (E-P). This permitted to identify those regions from where air masses gain humidity (E-P>0) before arriving at the basins, what we consider as moisture sources. FLEXPART has been successfully utilized for the same goal in several studies. This allowed investigating the hydrological budget of (E-P) over the NRB and MRB as well as their role as sources of moisture for surrounded continental regions. This study examines the variability of moisture uptake by the basins from these sources during drought and wet episodes in the basins. We consider this a new approach to be a useful method for understanding the causes and variability of drought and wet events in other regions worldwide.

Article 3 Reads 6 Citations A Lagrangian perspective of the hydrological cycle in the Congo River basin Rogert Sorí, Raquel Nieto, Sergio M. Vicente-Serrano, Anita ... Published: 04 August 2017
Earth System Dynamics, doi: 10.5194/esd-8-653-2017
DOI See at publisher website ABS Show/hide abstract
The Lagrangian model FLEXPART is used to identify the moisture sources of the Congo River basin (CRB) and investigate their role in the hydrological cycle. This model allows us to track atmospheric parcels while calculating changes in the specific humidity through the budget of evaporation minus precipitation. This method permits the annual-scale identification of five continental and four oceanic principal regions that provide moisture to the CRB from both hemispheres over the course of the year. The most important is the CRB, which provides more than 50% of the total atmospheric moisture contribution to precipitation over itself. Additionally, both the land that extends to the east of the CRB and the eastern equatorial South Atlantic Ocean are very important sources, while the Red Sea source is merely important in the (E − P) budget over the CRB despite its high evaporation rate. The moisture-sink patterns over the CRB in air masses that were tracked forward in time from all the sources follow the latitudinal rainfall migration and are mostly highly correlated with the pattern of the precipitation rate, ensuring a link between them. In wet (dry) years, the contribution of moisture to precipitation from the CRB over itself increases (decreases). Despite the enhanced evaporative conditions over the basin during dry years, the vertically integrated moisture flux (VIMF) divergence inhibits precipitation and suggests the transport of moisture from the CRB to remote regions.
CONFERENCE-ARTICLE 12 Reads 0 Citations Dry and wet conditions in the Niger River Basin and its link with atmospheric moisture transport Rogert Sorí, Raquel Nieto, Anita Drumond, Luis Gimeno Published: 17 July 2017
The 2nd International Electronic Conference on Atmospheric Sciences, doi: 10.3390/ecas2017-04150
DOI See at publisher website ABS Show/hide abstract

In West Africa, is located the Niger River Basin (NRB). Dry and wet conditions were investigated in this basin during the rainy (May-October) and dry (November-April) seasons, from 1980 to 2014. To do this was, calculated the Standardized Precipitation-Evapotranspiration Index (SPEI) at the time scale of 6-months for the whole NRB. The Lagrangian model FLEXPART v9.0 has been used to compute over the main semi-annual climatological moisture sources of the NRB, the budget of evaporation minus precipitation (E-P) over 10-day backward trajectories from the NRB itself. Positive (negative) (E-P) values indicate moisture uptake (loss). This permit evaluating the role of continental and oceanic sources of moisture separately for composites of extremely and severely dry and wet conditions in the basin. The results show for the dry season the negative trend of the April-SPEI6 values and the (E-P)>0 values obtained over the tropical east-north Atlantic Ocean (NAtl), the western Sahel and the Mediterranean region. Over these sources, the anomalies of (E-P) for driest and wettest composites indicate their direct response. On the contrary, for the rainy season, the October-SPEI6 values trend is positive, as well it occurs for the moisture uptake over the South Sahel (SSah) and the NRB itself. The anomalies of the (E-P) values for driest and wettest rainy seasons composites suggest a direct relationship with those obtained mainly over SSah, SAtl and the NRB itself.