Please login first
Rogert Sorí   Mr.  Graduate Student or Post Graduate 
Timeline See timeline
Rogert Sorí published an article in June 2018.
Top co-authors
Luis Gimeno

81 shared publications

Raquel Nieto

22 shared publications

Anita Drumond

13 shared publications

EPhysLab, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, Ourense, Spain

10
Publications
28
Reads
11
Downloads
2
Citations
Publication Record
Distribution of Articles published per year 
(2015 - 2018)
Total number of journals
published in
 
10
 
Publications See all
Article 0 Reads 0 Citations The Atmospheric Branch of the Hydrological Cycle over the Negro and Madeira River Basins in the Amazon Region Rogert Sorí, José A. Marengo, Raquel Nieto, Anita Drumond, L... Published: 05 June 2018
Water, doi: 10.3390/w10060738
DOI See at publisher website
ABS Show/hide abstract
The Amazon region, in South America, contains the largest rainforest and biodiversity in the world, and plays an important role in the regional and global hydrological cycle. In the present study, we identified the main sources of moisture of two subbasins of the Amazon River Basin, the Negro and Madeira River Basins respectively. The source-sink relationships of atmospheric moisture are investigated. The analysis is performed for the period from 1980–2016. The results confirm two main oceanic moisture sources for both basins, i.e., oceanic regions in the Tropical North and South Atlantic oceans. On the continents are, the Negro River Basin itself, and nearby regions to the northeast. For the Madeira River Basin, the most important continental sources are itself, and surrounding regions of the South American continent. Forward-trajectory analysis of air masses over the source regions is used to compute the moisture contribution to precipitation over basins. Oceanic (continental) sources play the most important role in the Negro River Basin (Madeira River Basin). The moisture contribution from the Tropical North Atlantic region modulates the onset and demise of the rainy season in the Negro River Basin; while the moisture contribution from the rest of the Amazon River Basin, the Madeira Basin itself, and Tropical South America leads to the onset of the rainy season in the Madeira River Basin. These regions also played the most important role in decreasing the moisture supply during most severe dry episodes in both basins. During ‘’El Niño’’, generally occurs a reduction (increase) of the moisture contribution to the Negro River Basin (Madeira River Basin; mainly from April to August) from almost all the sources, causing a decrease in the precipitation. Generally, the contrary occurs during ‘’La Niña’’.
Article 1 Read 1 Citation The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins Rogert Sorí, Raquel Nieto, Anita Drumond, Sergio M. Vicente-... Published: 15 December 2017
Hydrology and Earth System Sciences, doi: 10.5194/hess-21-6379-2017
DOI See at publisher website
ABS Show/hide abstract
The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins (IRB, GRB, and BRB respectively) in the South Asian region was investigated. The 3-dimensional model FLEXPART v9.0 was utilized. An important advantage of this model is that it permits the computation of the freshwater budget on air parcel trajectories both backward and forward in time from 0.1 to 1000hPa in the atmospheric vertical column. The analysis was conducted for the westerly precipitation regime (WPR) (November–April) and the monsoonal precipitation regime (MPR) (May–October) in the period from 1981 to 2015. The main terrestrial and oceanic climatological moisture sources for the IRB, GRB, and BRB and their contribution to precipitation over the basins were identified. For the three basins, the most important moisture sources for precipitation are (i) in the continental regions, the land masses to the west of the basins (in this case called western Asia), the Indian region (IR), and the basin itself, and (ii) from the ocean, the utmost sources being the Indian Ocean (IO) and the Bay of Bengal (BB), and it is remarkable that despite the amount of moisture reaching the Indus and Ganges basins from land sources, the moisture supply from the IO seems to be first associated with the rapid increase or decrease in precipitation over the sources in the MPR. The technique of the composites was used to analyse how the moisture uptake values spatially vary from the sources (the budget of evaporation minus precipitation (E − P) was computed in a backward experiment from the basins) but during the pre-onset and pre-demise dates of the monsoonal rainfall over each basin; this confirmed that over the last days of the monsoon at the basins, the moisture uptake areas decrease in the IO. The Indian region, the Indian Ocean, the Bay of Bengal, and the basins themselves are the main sources of moisture responsible for negative (positive) anomalies of moisture contribution to the basins during composites of driest (wettest) WPR and MPR.
CONFERENCE-ARTICLE 8 Reads 0 Citations <strong>Drought and </strong><strong>wet episodes in Amazonia: the role of atmospheric moisture transport</strong> Rogert Sorí, José Marengo, Raquel Nieto, Anita Drumond, Luis... Published: 06 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04846
DOI See at publisher website
ABS Show/hide abstract

The Amazon River basin (ARB) in Sud-America contains the world largest rainforest and biodiversity and plays an important role in the regional and global hydrological cycle. It consist of several sub-basins as the Negro River basin (NRB) in the north and the Madeira River basin (MRB) to the south, both considered of utmost importance in the Amazonia for the Amazon River. The precipitation annual cycle in both basins experiences an opposite annual cycle and as a consequence their contributions to the Amazon River are lagged in time. Here we utilized the Standardized Precipitation Index (SPEI) to identify drought and wet conditions in the NRB and MRB along the period 1980-2016. This index has the advantages over other index because considers the effect of the Atmospheric Evaporation Demand (AED) on drought severity. Besides, the Lagrangian dispersion model FLEXPART v9.0 was used to track backward in time air masses residing over the basins and to calculate along the trajectories the budget of (E-P). This permitted to identify those regions from where air masses gain humidity (E-P>0) before arriving at the basins, what we consider as moisture sources. FLEXPART has been successfully utilized for the same goal in several studies. This allowed investigating the hydrological budget of (E-P) over the NRB and MRB as well as their role as sources of moisture for surrounded continental regions. This study examines the variability of moisture uptake by the basins from these sources during drought and wet episodes in the basins. We consider this a new approach to be a useful method for understanding the causes and variability of drought and wet events in other regions worldwide.

Article 1 Read 1 Citation A Lagrangian perspective of the hydrological cycle in the Congo River basin Rogert Sorí, Raquel Nieto, Sergio M. Vicente-Serrano, Anita ... Published: 04 August 2017
Earth System Dynamics, doi: 10.5194/esd-8-653-2017
DOI See at publisher website
ABS Show/hide abstract
The Lagrangian model FLEXPART is used to identify the moisture sources of the Congo River basin (CRB) and investigate their role in the hydrological cycle. This model allows us to track atmospheric parcels while calculating changes in the specific humidity through the budget of evaporation minus precipitation. This method permits the annual-scale identification of five continental and four oceanic principal regions that provide moisture to the CRB from both hemispheres over the course of the year. The most important is the CRB, which provides more than 50% of the total atmospheric moisture contribution to precipitation over itself. Additionally, both the land that extends to the east of the CRB and the eastern equatorial South Atlantic Ocean are very important sources, while the Red Sea source is merely important in the (E − P) budget over the CRB despite its high evaporation rate. The moisture-sink patterns over the CRB in air masses that were tracked forward in time from all the sources follow the latitudinal rainfall migration and are mostly highly correlated with the pattern of the precipitation rate, ensuring a link between them. In wet (dry) years, the contribution of moisture to precipitation from the CRB over itself increases (decreases). Despite the enhanced evaporative conditions over the basin during dry years, the vertically integrated moisture flux (VIMF) divergence inhibits precipitation and suggests the transport of moisture from the CRB to remote regions.
Article 1 Read 0 Citations The atmospheric branch of the hydrological cycle over the Indus, Ganges and Brahmaputra River basins Rogert Sorí, Raquel Nieto, Anita Drumond, Sergio M. Vicente-... Published: 24 July 2017
Hydrology and Earth System Sciences Discussions, doi: 10.5194/hess-2017-378
DOI See at publisher website
ABS Show/hide abstract
The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins in the South Asian region was investigated. The 3-dimensional model FLEXPART v9.0 was utilized. An important advantage of this model is that it permits the computation of the freshwater budget on air parcels both backward and forward in time trajectories from 0.1 and 1000 hPa in the atmospheric vertical column. The analysis was conducted for the Westerly Precipitation Regime (WPR) (November–April) and the Monsoonal Precipitation Regime (MPR) (May–October) in the period from 1981–2015. The main terrestrial and oceanic climatological moisture sources for the IRB, GRB and BRB and their contribution to precipitation over the basins were identified. For the three basins, the most important moisture sources for precipitation are (i) on the continental regions, the land masses to the west of the basins (in this case called West Asia), the Indian region (IR) and the basin itself, and (ii) from the ocean, the utmost sources are the Indian Ocean (IO) and the Bay of Bengal (BB), and it is remarkable that despite the amount of moisture reaching the IRB and GRB from land sources, the moisture supply from the IO seems to be first associated with the rapid increase/decrease in precipitation over the sources in the MPR. The technique of the composites was used to analyse how the moisture uptake spatially vary from the sources (the budget of evaporation minus precipitation (E − P) was computed in a backward experiment from the basins) but during the preonset and predemise dates of the monsoonal rainfall over each basin; this confirmed that over the last days of the monsoon at the basins, the moisture uptake areas decrease in the IO. The Indian region, the Indian Ocean and the basins itself are the main sources of moisture responsible for negative (positive) anomalies of moisture contribution to the basins during composites of driest (wettest) WPR and MPR.
CONFERENCE-ARTICLE 8 Reads 0 Citations Dry and wet conditions in the Niger River Basin and its link with atmospheric moisture transport Rogert Sorí, Raquel Nieto, Anita Drumond, Luis Gimeno Published: 17 July 2017
The 2nd International Electronic Conference on Atmospheric Sciences, doi: 10.3390/ecas2017-04150
DOI See at publisher website
ABS Show/hide abstract

In West Africa, is located the Niger River Basin (NRB). Dry and wet conditions were investigated in this basin during the rainy (May-October) and dry (November-April) seasons, from 1980 to 2014. To do this was, calculated the Standardized Precipitation-Evapotranspiration Index (SPEI) at the time scale of 6-months for the whole NRB. The Lagrangian model FLEXPART v9.0 has been used to compute over the main semi-annual climatological moisture sources of the NRB, the budget of evaporation minus precipitation (E-P) over 10-day backward trajectories from the NRB itself. Positive (negative) (E-P) values indicate moisture uptake (loss). This permit evaluating the role of continental and oceanic sources of moisture separately for composites of extremely and severely dry and wet conditions in the basin. The results show for the dry season the negative trend of the April-SPEI6 values and the (E-P)>0 values obtained over the tropical east-north Atlantic Ocean (NAtl), the western Sahel and the Mediterranean region. Over these sources, the anomalies of (E-P) for driest and wettest composites indicate their direct response. On the contrary, for the rainy season, the October-SPEI6 values trend is positive, as well it occurs for the moisture uptake over the South Sahel (SSah) and the NRB itself. The anomalies of the (E-P) values for driest and wettest rainy seasons composites suggest a direct relationship with those obtained mainly over SSah, SAtl and the NRB itself.