Please login first
Home > Feed > Timeline
Timeline of Rogert Sorí

2018
Oct
31
Published new article




Article

The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology

Published: 31 October 2018 by MDPI in Water

doi: 10.3390/w10111550

Iran faces climate disparities due to extreme topographic anomalies, the Caspian Sea and the Persian Gulf water bodies, influences from diverse air masses and moisture sources, and its considerable area. FLEXPART model has been utilized to determine the main marine and continental moisture sources for south-central (Shiraz box) and northeastern (Mashhad box) parts of Iran. The marine moisture sources directly influenced extreme drought and wet conditions in Shiraz and Mashhad boxes during the wet period, while no correlation was observed during the dry period. In addition to local components, extreme drought and wet conditions have also been influenced by the climatic teleconnections. Extreme drought conditions mainly occurred during the La Niña phase, while wet conditions mainly occurred during the El Niño phase. Scrutinizing the effect of marine moisture sources on the hydrology of water resources demonstrated that the moisture contribution from the Arabian Sea directly influenced the discharges of Chenar-rahdar (in the Shiraz box) and Kardeh (in the Mashhad box) rivers during the wet period. However, the Red Sea inversely correlated with the discharges of both rivers during the dry period. Hydrogeologists, hydrologists, and meteorologists can utilize the outputs of this survey to develop climatology and hydrology models in the future.

2 Reads | 0 Citations
2018
Oct
17
Published new article




Article

The Identification of Iran’s Moisture Sources Using a Lagrangian Particle Dispersion Model

Published: 17 October 2018 by MDPI in Atmosphere

doi: 10.3390/atmos9100408

Iran has faced many water shortage crises in the past. Iran’s moisture sources for precipitation were identified by Lagrangian approach using the FLEXible PARTicle dispersion model (FLEXPART) v9.0 model. The results demonstrate that Iran receives its moisture from both continental and oceanic sources. During the wet season, moisture uptake from the Arabian Sea, the Persian Gulf, and the Mediterranean Sea is dominant, while during the dry season, the role of the Red Sea, the Caspian Sea, and the Persian Gulf is intensified. Studying drought conditions by comparing 1-month, 6-month, and 12-month standardized precipitation index (SPI) with (E-P) values of oceanic and continental moisture sources (E stands for the evaporation and P the precipitation) using multiregression model demonstrates that among oceanic sources the Arabian Sea, the Persian Gulf, the Mediterranean Sea, and the Indian Ocean affect SPI values and among continental sources, moisture from bare grounds and cultivated lands influences SPI values during wet season. However, no correlation exists between oceanic and continental (E-P) and SPI values during the dry season. The results obtained by this study can be used by meteorologists and hydrology scientists for future water management programmes in Iran.

1 Reads | 1 Citations
2018
Jun
05
Published new article




Article

The Atmospheric Branch of the Hydrological Cycle over the Negro and Madeira River Basins in the Amazon Region

Published: 05 June 2018 by MDPI in Water

doi: 10.3390/w10060738

The Amazon region, in South America, contains the largest rainforest and biodiversity in the world, and plays an important role in the regional and global hydrological cycle. In the present study, we identified the main sources of moisture of two subbasins of the Amazon River Basin, the Negro and Madeira River Basins respectively. The source-sink relationships of atmospheric moisture are investigated. The analysis is performed for the period from 1980–2016. The results confirm two main oceanic moisture sources for both basins, i.e., oceanic regions in the Tropical North and South Atlantic oceans. On the continents are, the Negro River Basin itself, and nearby regions to the northeast. For the Madeira River Basin, the most important continental sources are itself, and surrounding regions of the South American continent. Forward-trajectory analysis of air masses over the source regions is used to compute the moisture contribution to precipitation over basins. Oceanic (continental) sources play the most important role in the Negro River Basin (Madeira River Basin). The moisture contribution from the Tropical North Atlantic region modulates the onset and demise of the rainy season in the Negro River Basin; while the moisture contribution from the rest of the Amazon River Basin, the Madeira Basin itself, and Tropical South America leads to the onset of the rainy season in the Madeira River Basin. These regions also played the most important role in decreasing the moisture supply during most severe dry episodes in both basins. During ‘’El Niño’’, generally occurs a reduction (increase) of the moisture contribution to the Negro River Basin (Madeira River Basin; mainly from April to August) from almost all the sources, causing a decrease in the precipitation. Generally, the contrary occurs during ‘’La Niña’’.

1 Reads | 3 Citations
2017
Dec
15
Published new article




Article

The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins

Published: 15 December 2017 by Copernicus GmbH in Hydrology and Earth System Sciences

doi: 10.5194/hess-21-6379-2017

The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins (IRB, GRB, and BRB respectively) in the South Asian region was investigated. The 3-dimensional model FLEXPART v9.0 was utilized. An important advantage of this model is that it permits the computation of the freshwater budget on air parcel trajectories both backward and forward in time from 0.1 to 1000hPa in the atmospheric vertical column. The analysis was conducted for the westerly precipitation regime (WPR) (November–April) and the monsoonal precipitation regime (MPR) (May–October) in the period from 1981 to 2015. The main terrestrial and oceanic climatological moisture sources for the IRB, GRB, and BRB and their contribution to precipitation over the basins were identified. For the three basins, the most important moisture sources for precipitation are (i) in the continental regions, the land masses to the west of the basins (in this case called western Asia), the Indian region (IR), and the basin itself, and (ii) from the ocean, the utmost sources being the Indian Ocean (IO) and the Bay of Bengal (BB), and it is remarkable that despite the amount of moisture reaching the Indus and Ganges basins from land sources, the moisture supply from the IO seems to be first associated with the rapid increase or decrease in precipitation over the sources in the MPR. The technique of the composites was used to analyse how the moisture uptake values spatially vary from the sources (the budget of evaporation minus precipitation (E − P) was computed in a backward experiment from the basins) but during the pre-onset and pre-demise dates of the monsoonal rainfall over each basin; this confirmed that over the last days of the monsoon at the basins, the moisture uptake areas decrease in the IO. The Indian region, the Indian Ocean, the Bay of Bengal, and the basins themselves are the main sources of moisture responsible for negative (positive) anomalies of moisture contribution to the basins during composites of driest (wettest) WPR and MPR.

3 Reads | 2 Citations
2017
Nov
06
Published new article






<strong>Drought and </strong><strong>wet episodes in Amazonia: the role of atmospheric moisture transport</strong>

Published: 06 November 2017 by MDPI AG in First International Electronic Conference on the Hydrological Cycle

doi: 10.3390/CHyCle-2017-04846

<p>The Amazon River basin (ARB) in Sud-America contains the world largest rainforest and biodiversity and plays an important role in the regional and global hydrological cycle. It consist of several sub-basins as the Negro River basin (NRB) in the north and the Madeira River basin (MRB) to the south, both considered of utmost importance in the Amazonia for the Amazon River. The precipitation annual cycle in both basins experiences an opposite annual cycle and as a consequence their contributions to the Amazon River are lagged in time. Here we utilized the Standardized Precipitation Index (SPEI) to identify drought and wet conditions in the NRB and MRB along the period 1980-2016. This index has the advantages over other index because considers the effect of the Atmospheric Evaporation Demand (AED) on drought severity. Besides, the Lagrangian dispersion model FLEXPART v9.0 was used to track backward in time air masses residing over the basins and to calculate along the trajectories the budget of (<em>E-P</em>). This permitted to identify those regions from where air masses gain humidity (<em>E-P&gt;0</em>) before arriving at the basins, what we consider as moisture sources. FLEXPART has been successfully utilized for the same goal in several studies. This allowed investigating the hydrological budget of <em>(E-P)</em> over the NRB and MRB as well as their role as sources of moisture for surrounded continental regions. This study examines the variability of moisture uptake by the basins from these sources during drought and wet episodes in the basins. We consider this a new approach to be a useful method for understanding the causes and variability of drought and wet events in other regions worldwide.</p>

18 Reads | 0 Citations
2017
Aug
04
Published new article




Article

A Lagrangian perspective of the hydrological cycle in the Congo River basin

Published: 04 August 2017 by Copernicus GmbH in Earth System Dynamics

doi: 10.5194/esd-8-653-2017

The Lagrangian model FLEXPART is used to identify the moisture sources of the Congo River basin (CRB) and investigate their role in the hydrological cycle. This model allows us to track atmospheric parcels while calculating changes in the specific humidity through the budget of evaporation minus precipitation. This method permits the annual-scale identification of five continental and four oceanic principal regions that provide moisture to the CRB from both hemispheres over the course of the year. The most important is the CRB, which provides more than 50% of the total atmospheric moisture contribution to precipitation over itself. Additionally, both the land that extends to the east of the CRB and the eastern equatorial South Atlantic Ocean are very important sources, while the Red Sea source is merely important in the (E − P) budget over the CRB despite its high evaporation rate. The moisture-sink patterns over the CRB in air masses that were tracked forward in time from all the sources follow the latitudinal rainfall migration and are mostly highly correlated with the pattern of the precipitation rate, ensuring a link between them. In wet (dry) years, the contribution of moisture to precipitation from the CRB over itself increases (decreases). Despite the enhanced evaporative conditions over the basin during dry years, the vertically integrated moisture flux (VIMF) divergence inhibits precipitation and suggests the transport of moisture from the CRB to remote regions.

3 Reads | 6 Citations
2017
Jul
24
Published new article




Article

The atmospheric branch of the hydrological cycle over the Indus, Ganges and Brahmaputra River basins

Published: 24 July 2017 by Copernicus GmbH in Hydrology and Earth System Sciences Discussions

doi: 10.5194/hess-2017-378

The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins in the South Asian region was investigated. The 3-dimensional model FLEXPART v9.0 was utilized. An important advantage of this model is that it permits the computation of the freshwater budget on air parcels both backward and forward in time trajectories from 0.1 and 1000 hPa in the atmospheric vertical column. The analysis was conducted for the Westerly Precipitation Regime (WPR) (November–April) and the Monsoonal Precipitation Regime (MPR) (May–October) in the period from 1981–2015. The main terrestrial and oceanic climatological moisture sources for the IRB, GRB and BRB and their contribution to precipitation over the basins were identified. For the three basins, the most important moisture sources for precipitation are (i) on the continental regions, the land masses to the west of the basins (in this case called West Asia), the Indian region (IR) and the basin itself, and (ii) from the ocean, the utmost sources are the Indian Ocean (IO) and the Bay of Bengal (BB), and it is remarkable that despite the amount of moisture reaching the IRB and GRB from land sources, the moisture supply from the IO seems to be first associated with the rapid increase/decrease in precipitation over the sources in the MPR. The technique of the composites was used to analyse how the moisture uptake spatially vary from the sources (the budget of evaporation minus precipitation (E − P) was computed in a backward experiment from the basins) but during the preonset and predemise dates of the monsoonal rainfall over each basin; this confirmed that over the last days of the monsoon at the basins, the moisture uptake areas decrease in the IO. The Indian region, the Indian Ocean and the basins itself are the main sources of moisture responsible for negative (positive) anomalies of moisture contribution to the basins during composites of driest (wettest) WPR and MPR.

2 Reads | 0 Citations
2017
Jul
17
Published new article






Dry and wet conditions in the Niger River Basin and its link with atmospheric moisture transport

Published: 17 July 2017 by MDPI AG in The 2nd International Electronic Conference on Atmospheric Sciences

doi: 10.3390/ecas2017-04150

<p>In West Africa, is located the Niger River Basin (NRB). Dry and wet conditions were investigated in this basin during the rainy (May-October) and dry (November-April) seasons, from 1980 to 2014. To do this was, calculated the Standardized Precipitation-Evapotranspiration Index (SPEI) at the time scale of 6-months for the whole NRB. The Lagrangian model FLEXPART v9.0 has been used to compute over the main semi-annual climatological moisture sources of the NRB, the budget of evaporation minus precipitation <em>(E-P)</em> over 10-day backward trajectories from the NRB itself. Positive (negative) <em>(E-P)</em> values indicate moisture uptake (loss). This permit evaluating the role of continental and oceanic sources of moisture separately for composites of extremely and severely dry and wet conditions in the basin. The results show for the dry season the negative trend of the April-SPEI6 values and the <em>(E-P)&gt;0</em> values obtained over the tropical east-north Atlantic Ocean (NAtl), the western Sahel and the Mediterranean region. Over these sources, the anomalies of <em>(E-P)</em> for driest and wettest composites indicate their direct response. On the contrary, for the rainy season, the October-SPEI6 values trend is positive, as well it occurs for the moisture uptake over the South Sahel (SSah) and the NRB itself. The anomalies of the <em>(E-P)</em> values for driest and wettest rainy seasons composites suggest a direct relationship with those obtained mainly over SSah, SAtl and the NRB itself.</p>

14 Reads | 0 Citations
2017
Mar
09
Published new article




Article

A Lagrangian Perspective of the Hydrological Cycle in the Congo River Basin

Published: 09 March 2017 by Copernicus GmbH in Earth System Dynamics Discussions

doi: 10.5194/esd-2017-21

The Lagrangian model FLEXPART was used to identify the moisture sources of the Congo River Basin (CRB) and investigate their role in the hydrological cycle. This model allows us to track atmospheric parcels while calculating changes in the specific humidity through the budget of evaporation-minus-precipitation. The method permitted the identification at an annual scale of five continental and four oceanic regions that provide moisture to the CRB from both hemispheres over the course of the year. The most important is the CRB itself, providing more than 50% of the total atmospheric moisture income to the basin. Apart from this, both the land extension to the east of the CRB together with the ocean located in the eastern equatorial South Atlantic Ocean are also very important sources, while the Red Sea source is merely important in the budget of (E − P) over the CRB, despite its high evaporation rate. The moisture sink patterns over the CRB in air masses tracked forwards from all the sources follow a latitudinal rainfall migration and are mostly highly correlated with the pattern of precipitation rate, ensuring a link between them. The analysis of the wet and dry periods in the CRB confirms the key role of the basin in modulating the fresh water balance within the basin itself.

3 Reads | 0 Citations
2017
Feb
14
Published new article




Article

The Niger River Basin Moisture Sources: A Lagrangian Analysis

Published: 14 February 2017 by MDPI in Atmosphere

doi: 10.3390/atmos8020038

The Niger River basin (NRB) is located in the important climatic region of the African Sahel. In this study we use the Lagrangian tridimensional model FLEXPART v9.0 to identify and characterise the moisture sources for the NRB. This method allows the integration of the budget of evaporation minus precipitation over 10-day backward trajectories, thereby identifying the origins of the air masses residing over the NRB. The analysis was performed for the 35-year period from 1980 to 2014, which allowed us to identify the main semi-annual climatological moisture sources of the NRB, for November–April (NDJFMA) (dry season) and May–October (MJJASO) (wet season), and to quantify the respective moisture uptakes. Throughout the year, the NRB main moisture sources are located on the tropical eastern North Atlantic Ocean near Africa, the tropical eastern South Atlantic Ocean in the Gulf of Guinea, in the regions surrounding the Sahel and in the Mediterranean Sea. The extents of these sources vary between dry and wet seasons. In NDJFMA two regions appear in the east of the basin, which then join up, forming a larger source to the northeast of the basin in MJJASO, when three other less important moisture sources can be seen in central-equatorial Africa, the tropical western Indian Ocean and the Persian Gulf. In NDJFMA the majority of the moisture uptake comes from the NRB itself but then, later in MJJASO, when the precipitation increases over the basin the greatest uptake of moisture occurs over the tropical eastern South Atlantic Ocean, northeast Africa and the NRB, which suggests that these are the effective sources of precipitation in the basin in overall terms. The seasonal moisture uptake quantification over the moisture sources of the NRB, reveals that largest fraction of moisture income to the basin from outside its boundaries. Despite providing moisture to the NRB the source located in the tropical eastern North Atlantic Ocean does not contribute that much to precipitation in the basin. A daily (ten-day) backward analysis shows the importance of the moisture uptake within the NRB and from near moisture sources during the first few (backward) days, while the Atlantic Ocean sources and the Mediterranean became more important during the last five (backward) days of the analysis.

2 Reads | 4 Citations
2016
Jul
16
Published new article






The Niger River Basin Moisture Sources. A Lagrangian Analysis

Published: 16 July 2016 by MDPI AG in The 1st International Electronic Conference on Atmospheric Sciences

doi: 10.3390/ecas2016-D005

<p>The Niger River basin (NRB) is located on the important climatic region of the African Sahel. In this work we use the Lagrangian tridimensional model FLEXPART v9.0, to identify and characterize the moisture sources for the NRB. The method allowed integrating the evaporation minus precipitation budget through 10 days backward trajectories and thus, identifying the origin of air masses residing over the NRB. The analysis was performed for 35 years from 1980 to 2014. There were identified the main seasonal climatological moisture sources of the NRB and quantify their contribution to the total moisture influx. At first day backward in time the NRB appears as the main moisture source, contributing less and less humidity to the particles during last days, suggesting the importance of local moisture supply to recycling process. Through the 10 days backward, the pattern of (E &ndash; P) shows the spatial expansion of sources and sinks regions. Across the year, the moisture supply to the NRB mainly comes from itself and the tropical-east south Atlantic Ocean, but are also important the rest of the sources located on the tropical-east north Atlantic Ocean near Africa, the Sahel surrounded regions, the Mediterranean Sea, the east Africa, the north-east Africa and less important small regions on central-equatorial Africa and the <br /> tropical-west Indian Ocean.<span></span></p>

15 Reads | 0 Citations
2015
Mar
31
Published new article




Article

Moisture contribution of the Atlantic Warm Pool to precipitation: a Lagrangian analysis

Published: 31 March 2015 by Frontiers Media SA in Frontiers in Environmental Science

doi: 10.3389/fenvs.2015.00022

In this work we use a Lagrangian model (FLEXPART) to investigate the contribution of moisture from the Atlantic Warm Pool (AWP) to the atmospheric hydrological budget during the period from 1982 to 1999, and to identify which regions are affected by the moisture transport from this source. FLEXPART computes budgets of evaporation minus precipitation by calculating changes in the specific humidity along 10-day forward trajectories. A monthly analysis was made for May-October, the typical development period of the AWP. Climatologically, the moisture transported from the AWP to North and Central America increases from June onwards. Humidity is also transported towards western Europe from July to October, probably favoured by the positioning of the North Atlantic Subtropical High and its associated flows. The largest moisture sinks associated with transport from the AWP were found from August to October, when the warm pool can extend to the north-western coast of Africa. The technique of composites was used to analyse how the interannual variability of moisture contribution from the AWP depends on changes in the pool’s areal extension, and on the El Niño Southern Oscillation (ENSO). The results indicate that during episodes when the AWP is at its maximum extent, its moisture contribution increased to the Caribbean, to the region of the Inter-tropical Convergence Zone (ITCZ), and to the North Atlantic. By contrast, less moisture was transported to southeastern North America during July and August, or to central North America during September and October. The differences in moisture sink regions for extreme ENSO episodes suggest that there are favoured sinks in the Caribbean and in the ITCZ region during La Niña events.

0 Reads | 0 Citations
Top