Please login first
Dexter Hunt   Dr.  Post Doctoral Researcher 
Timeline See timeline
Dexter Hunt published an article in October 2015.
Top co-authors See all
Chris Rogers

49 shared publications

Chris Bouch

6 shared publications

This person does not have an affiliation

Peter Braithwaite

5 shared publications

Joanne Leach

3 shared publications

This person does not have an affiliation

9
Publications
6
Reads
2
Downloads
8
Citations
Publication Record
Distribution of Articles published per year 
(2011 - 2015)
Total number of journals
published in
 
6
 
Publications See all
Article 0 Reads 0 Citations A Novel Methodology for the Application of Middle-Out, Model-Based Systems Engineering Techniques for City Waste Managem... Christopher J. Bouch, Richard Kenny, Dexter Hunt, Tommy Wall... Published: 01 October 2015
INCOSE International Symposium, doi: 10.1002/j.2334-5837.2015.00091.x
DOI See at publisher website
ABS Show/hide abstract
A holistic approach to urban development is required to meet global sustainability goals. Part of the challenge involves finding an effective response to the increasing volumes of solid waste being generated in cities. The European Commission has developed a thematic strategy, and issued directives, on the prevention and recycling of waste. The United Kingdom has introduced legislation in line with these, and is working to develop its own waste management strategies against a very complex background. This paper describes a novel methodology for the application of middle-out, model-based systems engineering techniques to help with this, using the city of Birmingham in the United Kingdom as an example. The methodology creates repeatable and objective models of existing waste management systems and links them to city management accounts to provide a foundation for the design of new and improved systems and business models.
CONFERENCE-ARTICLE 0 Reads 0 Citations Material Flow Analysis (MFA) for Liveable Cities Dexter Hunt, Joanne Leach, Susan Lee, Chris Bouch, Peter Bra... Published: 05 November 2014
Proceedings of The 4th World Sustainability Forum, doi: 10.3390/wsf-4-f010
DOI See at publisher website
ABS Show/hide abstract
Well-functioning 'liveable' cities should be sustainable and their consumption of natural resources and production of waste must fit within the capacities of the local, regional and global ecosystems. It is increasingly becoming suggested that an Urban Metabolism (UM), approach could help city decision-makers (e.g. planners) take account of numerous critical influencing factors related to the inward outward flow(s) of natural resources (e.g. food, water and energy) and accumulation of waste. The paper identifies the precursory step for any UM study (Mass Flow Analysis - MFA) and applies it to a case study (Birmingham, UK) in order to show how it could contribute to the measurement, assessment and understanding of liveability, defined as 80% reduction in carbon (from 1990 levels); resource secure (an ethos of One planet living); with maintained or enhanced wellbeing. By provided focus upon an individual resource stream (i.e. water) at multiple scales (city to individual) it is shown that MFA can be used as a starting point to develop realistic and radical engineering solutions. However further work is required for it to be truly reflective of broader aspects of urban liveability.
CONFERENCE-ARTICLE 1 Read 0 Citations Rainwater Harvesting: Trade-offs Between Pluvial Flood Risk Alleviation and Mains Water Resource Savings Dexter Hunt, Chris Rogers Published: 31 October 2014
The 4th World Sustainability Forum, doi: 10.3390/wsf-4-a006
DOI See at publisher website
ABS Show/hide abstract
Stormwater run-off generally refers to pluvial, i.e. rainfall related, water that does not soak into the ground at the point at which it falls. The volume and timing of stormwater run-off, specifically from roof tops is highly important to urban flood control and its capture has the potential for non-potable uses within (e.g. for WC flushing and for washing machines) and outside the home (e.g. car washing and garden watering). The former runs a risk of flash floods where local and downstream stormwater (or combined sewer) systems become overburdened in times of extreme rainfall events. The later will influence potential future urban water supplies, which is particularly important at time(s) where mains water availability is scarce (e.g. times of drought or when the national demand for water in the UK increases beyond supply capabilities) population. Rainwater harvesting (RWH) systems can benefit flood risk and water supply however their ability to do either / both is dependent on the subtleties of filling and emptying (i.e. stored water volume or spare storage capacity) which are not fully understood, particularly in peak flow events. Through the use of five years worth of daily rainfall data for Birmingham (2007 - a record breaking year for UK flooding, to 2011) these subtleties are investigated through a sensitivity type analysis of tank size, occupancy rates and technology efficiency. The results show that RWH tanks sized according to BS8515 would not have been capable of capturing rainfall that fell in peak flow events. Moreover not all yearly non-potable demands would have been met. If tanks were over-sized by a factor of 3.0 (i.e. use the larger of 15% yearly non-potable demands or rainfall) this would have been sufficient to meet all demands and eliminate roof-top run-off.
CONFERENCE-ARTICLE 1 Read 0 Citations Food Security Challenges: Influences of an Energy/Water/Food Nexus Valeria De Laurentiis, Dexter Hunt, Christopher Rogers Published: 31 October 2014
The 4th World Sustainability Forum, doi: 10.3390/wsf-4-g003
DOI See at publisher website
ABS Show/hide abstract
The food/water/energy nexus is the study of the interactions and connections between these three resources, the synergies and tradeoffs that arise from the way they are managed, and the potential areas of conflict. The core of nexus thinking is that no good results can be achieved from considering these resources independently, which means that food security cannot be achieved in a context of either/both water or/and energy insecurity. All three elements have to be assured to foster sustainability, resilience, prosperity and peace. In this paper attention is focused on the challenges posed by this nexus on achieving food security, which is embodied in the first Millennium Development Goal (MDG), which seeks to halve the number of hungry people in the world between 1990 and 2015. The primary aim of the paper is to identify how the nexus mentality underlies most of the pathways that have been proposed to achieve this goal. It argues that significant shortfalls exist and need to be addressed: there is still no generally accepted definition, and identifiable metrics for assessing the extent to which a food system fosters food security are lacking. Such metrics are necessary when evaluating alternative strategies and negotiating trade-offs therein.
Article 0 Reads 7 Citations A Benchmarking System for Domestic Water Use Dexter Hunt, Christopher Rogers, Dexter V. L. Hunt, Christop... Published: 19 May 2014
Sustainability, doi: 10.3390/su6052993
DOI See at publisher website
ABS Show/hide abstract
The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating) that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW) and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination) of the following: occupancy rates (1 to 4); roof size (12.5 m2 to 100 m2); garden size (25 m2 to 100 m2) and geographical location (North West, Midlands and South East, UK) with yearly temporal effects (i.e., rainfall and temperature). Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH) accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.
CONFERENCE-ARTICLE 2 Reads 0 Citations Projecting the UK’s Future Electricity Supply Mix: A Tool for Generating Sustainable Future Energy Scenarios Mehran Eskandari Torbaghan, Dexter Hunt, Michael Burrow Published: 31 October 2013
The 3rd World Sustainability Forum, doi: 10.3390/wsf3-d010
DOI See at publisher website
ABS Show/hide abstract
Growing energy demands and climatic changes, exacerbated through rapid increases in CO2 emissions, are two major global issues facing nations. Therefore ongoing research is being conducted on projecting supply / demand scenarios that look to match future energy demands against energy supply mixes. This requires energy providers to foresee the impact of various electricity generation scenarios on CO2 emissions and to assess the sustainability of, and risks involved with each so that an attitude of energy provision ‘whatever the cost’ does not prevail decision-making in the face of a plethora of electricity supply mixes and/or energy demand predictions is a complicated procedure which requires in depth consideration of the various scenarios that are being developed. This requires a high level of knowledge that is available only within a team of experts. Furthermore forecasting the possible impacts of various electricity scenarios on climate change as well as considering the associated cost just adds more complexity. This paper explores the features and choices available to decision-makers through the development of an Excel-based tool. The tool acts as a database for existing energy supply/demand scenarios and allows the user to look up existing scenarios or mix and match existing scenarios for the UK leading to a range of new possibilities. The benefits of creating and using the developed tool are explored within the paper and it is concluded that the tool begins to address the complex issues of projecting the most appropriate electricity supply mix and electricity demand by using a range of existing energy studies. In so doing it facilitates greatly decision-makers in beginning the process of further assessing the risks that might be involved. An example of using tool for developing three very different supply mix scenarios for the UK (including one with high share of interconnections) is provided.