Please login first
Alexandre M. Ramos     Post Doctoral Researcher 
Timeline See timeline
Alexandre M. Ramos published an article in November 2018.
Top co-authors See all
Ricardo M. Trigo

133 shared publications

Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal

José M. Vaquero

126 shared publications

Departamento de Física; Centro Universitario de Mérida, Universidad de Extremadura; Mérida Spain

Raquel Nieto

96 shared publications

Environmental Physics Laboratory (EphysLab), Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

Isabel F. Trigo

57 shared publications

Instituto Português do Mar e da Atmosfera Lisbon Portugal

Luis Gimeno

53 shared publications

Environmental Physics Laboratory (EphysLab), Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

47
Publications
60
Reads
16
Downloads
287
Citations
Publication Record
Distribution of Articles published per year 
(2008 - 2018)
Total number of journals
published in
 
25
 
Publications See all
Article 0 Reads 0 Citations Assessing the Use of Satellite-Based Estimates and High-Resolution Precipitation Datasets for the Study of Extreme Preci... Riccardo Hénin, Margarida L. R. Liberato, Alexandre M. Ramos... Published: 19 November 2018
Water, doi: 10.3390/w10111688
DOI See at publisher website ABS Show/hide abstract
An assessment of daily accumulated precipitation during extreme precipitation events (EPEs) occurring over the period 2000–2008 in the Iberian Peninsula (IP) is presented. Different sources for precipitation data, namely ERA-Interim and ERA5 reanalysis by the European Centre for Medium-Range Weather Forecast (ECMWF) and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), both in near-real-time and post-real-time releases, are compared with the best ground-based high-resolution (0.2° × 0.2°) gridded precipitation dataset available for the IP (IB02). In this study, accuracy metrics are analysed for different quartiles of daily precipitation amounts, and additional insights are provided for a subset of EPEs extracted from an objective ranking of extreme precipitation during the extended winter period (October to March) over the IP. Results show that both reanalysis and multi-satellite datasets overestimate (underestimate) daily precipitation sums for the least (most) extreme events over the IP. In addition, it is shown that the TRMM TMPA precipitation estimates from the near-real-time product may be considered for EPEs assessment over these latitudes. Finally, it is found that the new ERA5 reanalysis accounts for large improvements over ERA-Interim and it also outperforms the satellite-based datasets.
Article 0 Reads 1 Citation From Amazonia to southern Africa: atmospheric moisture transport through low-level jets and atmospheric rivers Alexandre M. Ramos, Ross C. Blamey, Iago Algarra, Raquel Nie... Published: 18 September 2018
Annals of the New York Academy of Sciences, doi: 10.1111/nyas.13960
DOI See at publisher website
Article 0 Reads 2 Citations Contribution of Moisture from Mediterranean Sea to Extreme Precipitation Events over Danube River Basin Danica Ciric, Raquel Nieto, Alexandre M. Ramos, Anita Drumon... Published: 04 September 2018
Water, doi: 10.3390/w10091182
DOI See at publisher website ABS Show/hide abstract
In the most recent decades, central Europe and the Danube River Basin area have been affected by an increase in the frequency and intensity of extreme daily rainfall, which has resulted in the more frequent occurrence of significant flood events. This study characterised the link between moisture from the Mediterranean Sea and extreme precipitation events, with varying lengths that were recorded over the Danube River basin between 1981 and 2015, and ranked the events with respect to the different time scales. The contribution of the Mediterranean Sea to the detected extreme precipitation events was then estimated using the Lagrangian FLEXPART dispersion model. Experiments were modelled in its forward mode, and particles leaving the Mediterranean Sea were tracked for a period of time determined with respect to the length of the extreme event. The top 100 extreme events in the ranking with durations of 1, 3, 5, 7, and 10 days were analysed, and it was revealed that most of these events occurred in the winter. For extreme precipitation, positive anomalies of moisture support from the Mediterranean were found to be in the order of 80% or more, but this support reached 100% in summer and spring. The results show that extreme precipitation events with longer durations are more influenced by the extreme Mediterranean anomalous moisture supply than those with shorter lengths. However, it is during shorter events when the Mediterranean Sea contributes higher amounts of moisture compared with its climatological mean values; for longer events, this contribution decreases progressively (but still doubles the climatological moisture contribution from the Mediterranean Sea). Finally, this analysis provides evidence that the optimum time period for accumulated moisture to be modelled by the Lagrangian model is that for which the extreme event is estimated. In future studies, this fine characterisation could assist in modelling moisture contributions from sources in relation to individual extreme events.
Article 0 Reads 0 Citations Impacts of Atmospheric Rivers in Extreme Precipitation on the European Macaronesian Islands Alexandre M. Ramos, Ricardo M. Trigo, Ricardo Tomé, Margarid... Published: 20 August 2018
Atmosphere, doi: 10.3390/atmos9080325
DOI See at publisher website ABS Show/hide abstract
The European Macaronesia Archipelagos (Azores, Madeira and Canary Islands) are struck frequently by extreme precipitation events. Here we present a comprehensive assessment on the relationship between atmospheric rivers and extreme precipitation events in these three Atlantic Archipelagos. The relationship between the daily precipitation from the various weather stations located in the different Macaronesia islands and the occurrence of atmospheric rivers (obtained from four different reanalyses datasets) are analysed. It is shown that the atmospheric rivers’ influence over extreme precipitation (above the 90th percentile) is higher in the Azores islands when compared to Madeira or Canary Islands. In Azores, for the most extreme precipitation days, the presence of atmospheric rivers is particularly significant (up to 50%), while for Madeira, the importance of the atmospheric rivers is reduced (between 30% and 40%). For the Canary Islands, the occurrence of atmospheric rivers on extreme precipitation is even lower.
Article 0 Reads 0 Citations Extreme Precipitation Events in Summer in the Iberian Peninsula and Its Relationship With Atmospheric Rivers Alexandre M. Ramos, Maria J. Martins, Ricardo Tomé, Ricardo ... Published: 10 August 2018
Frontiers in Earth Science, doi: 10.3389/feart.2018.00110
DOI See at publisher website ABS Show/hide abstract
This study identifies and characterizes the importance of the Atmospheric Rivers in the extreme precipitation episodes that strike the Iberian Peninsula and Portugal during the extended summer months (April to September) between 1950 and 2007. The extreme precipitation days are ranked taking into account a daily gridded precipitation database for the Iberian Peninsula at a 0.2° resolution. The ranking is based on the magnitude of the extreme precipitation days considering not only on the area affected above the 95th climatological percentile but also by the precipitation intensity within the anomalous area. The Atmospheric Rivers detection scheme is used for the North Atlantic Ocean basin that allows the identification of the persistent Atmospheric Rivers that impact the Iberian Peninsula for the extended summer months. It is shown, that there is a relationship between the Atmospheric Rivers and the extreme precipitation days in Portugal especially during the transition months of April, May and September. On the contrary when analysing the entire Iberia Peninsula the impact of ARs is considerably reduced. Moreover, the impacts of the Atmospheric Rivers is considerably higher for the top ranked events in Portugal but decreases when considering less intense extreme precipitation days.
CONFERENCE-ARTICLE 19 Reads 1 Citation <strong>Evaluating extreme precipitation events on the Iberian Peninsula using TRMM satellite data</strong> Margarida Liberato, Riccardo Hénin, Alexandre Ramos, Célia G... Published: 10 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04880
DOI See at publisher website ABS Show/hide abstract

An assessment of extreme precipitation events (EPEs) is performed using the high-resolution (0.2°) gridded daily precipitation database available for the IP, the accumulated precipitation from ERA-Interim reanalysis by EMCWF at 6-hour intervals, and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) dataset, based on multisatellite estimates of precipitation and gauges measurements, for the common period since 1998. This study presents an analysis and validation of the extreme precipitation characteristics over IP, using both satellite and ground observations. Results show that there is a good general agreement between total precipitation analysis from observational gridded and TRMM datasets, both temporal and spatially, although TRMM TMPA results are underestimated when compared to observations and ERA Interim data.

Top