Please login first
Marina Peña Gallardo   Ms.  Graduate Student or Post Graduate 
Timeline See timeline
Marina Peña Gallardo published an article in August 2018.
Top co-authors See all
J. Julio Camarero

167 shared publications

Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain

Raquel Nieto

96 shared publications

Environmental Physics Laboratory (EphysLab), Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

Santiago Beguería

73 shared publications

Estación Experimental de Aula Dei; Consejo Superior de Investigaciones Científicas (EEAD-CSIC); Zaragoza Spain

Diego G. Miralles

57 shared publications

Laboratory of Hydrology and Water Management—Ghent University; Coupure links 653, 9000 Gent, Belgium

Luis Gimeno

53 shared publications

Environmental Physics Laboratory (EphysLab), Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

7
Publications
77
Reads
34
Downloads
1
Citation
Publication Record
Distribution of Articles published per year 

Total number of journals
published in
 
3
 
Publications See all
Article 0 Reads 0 Citations Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands Marina Peña-Gallardo, Sergio M. Vicente-Serrano, J. Julio Ca... Published: 30 August 2018
Forests, doi: 10.3390/f9090524
DOI See at publisher website ABS Show/hide abstract
Drought is one of the key natural hazards impacting net primary production and tree growth in forest ecosystems. Nonetheless, tree species show different responses to drought events, which make it difficult to adopt fixed tools for monitoring drought impacts under contrasting environmental and climatic conditions. In this study, we assess the response of forest growth and a satellite proxy of the net primary production (NPP) to drought in peninsular Spain and the Balearic Islands, a region characterized by complex climatological, topographical, and environmental characteristics. Herein, we employed three different indicators based on in situ measurements and satellite image-derived vegetation information (i.e., tree-ring width, maximum annual greenness, and an indicator of NPP). We used seven different climate drought indices to assess drought impacts on the tree variables analyzed. The selected drought indices include four versions of the Palmer Drought Severity Index (PDSI, Palmer Hydrological Drought Index (PHDI), Z-index, and Palmer Modified Drought Index (PMDI)) and three multi-scalar indices (Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI), and Standardized Precipitation Drought Index (SPDI)). Our results suggest that—irrespective of drought index and tree species—tree-ring width shows a stronger response to interannual variability of drought, compared to the greenness and the NPP. In comparison to other drought indices (e.g., PDSI), and our results demonstrate that multi-scalar drought indices (e.g., SPI, SPEI) are more advantageous in monitoring drought impacts on tree-ring growth, maximum greenness, and NPP. This finding suggests that multi-scalar indices are more appropriate for monitoring and modelling forest drought in peninsular Spain and the Balearic Islands.
Article 0 Reads 1 Citation Effectiveness of drought indices in identifying impacts on major crops over the USA Marina Peña-Gallardo, Sergio M. Vicente-Serrano, Fernando Do... Published: 01 January 2018
Climate Research, doi: 10.3354/cr01519
DOI See at publisher website
CONFERENCE-ARTICLE 16 Reads 0 Citations Spatial and temporal variability of droughts in Estonia (1951-2015) Fernando Domínguez-Castro, Sergio Vicente-Serrano, Jaak Jaag... Published: 11 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04883
DOI See at publisher website ABS Show/hide abstract

Droughts have been poorly studied in Estonia despite of the important water deficit that occurred in recent times e.g. 2002 and 2006. We have studied the influence of atmospheric indices on the spatial and temporal variability of droughts in Estonia. We have analyzed 57 monthly precipitation series and 7 atmospheric indices (NAO, EA, EATL/WRUS, SCAND, P/EU, AO and WI) during the period 1951-2015. Estonia has been regionalized in three homogeneous regions according to drought variability, i.e. western, southeastern and northern. Standardized precipitation index at timescale of 1, 3, 6, and 12 months have been computed for each region. From 1951 to 1977 dry conditions prevail. On the other hand, from 1978 to 2015 wet conditions prevail interrupted by some intense but short droughts. The main influence of atmospheric indices on drought variability is recorded with SCAND for spring and autumn (negative correlations) and with WI for winter and summer (positive correlations).

CONFERENCE-ARTICLE 13 Reads 0 Citations Climatic influence on atmospheric evaporative demand in Estonia (1951-2015) Fernando Domínguez-Castro, Sergio Vicente-Serrano, Jaak Jaag... Published: 08 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04860
DOI See at publisher website ABS Show/hide abstract

Atmospheric evaporative demand (ADE) trends at global scale are important to understand the impact of global warming in the hydrological cycle. But there is no consensus, in the global scale studies, about ADE variability and many areas have been ignored in regional studies. This is the case of Estonia, located in the eastern coast of the Baltic Sea between 57.5 and 59.5°N. To shed light on the ADE variability in the country we have studied the spatial and temporal variability of ET0 from 1951 to 2015.

We have computed ET0 from 9 high-quality meteorological stations by Penman–Monteith equation. We have analysed the spatial and temporal variability of ET0 and its main drivers i.e. maximum temperature, minimum temperature, wind speed, sunshine duration, relative humidity and atmospheric pressure.

ET0, at annual scale and country level, shows a positive and significant trend with a magnitude of change during the studied period of 5.3 mm decade-1, with the highest values during the spring (4.1 mm decade-1).  The costal series show a higher magnitude of change (7.1 mm decade-1in average) than the inland series (4.3 mm decade-1 in average), principally because coastal areas show greater magnitude of change during the summer. High significant correlation (r=0.7-0.8) have been found among computed ET0 and observed evaporation measurements with evaporation pan and lysimeter during the period 1968-2005.

At annual scale, during spring and summer ET0 is highly correlated with sunshine (positive), relative humidity (negative) and maximum temperature (positive). Meanwhile sunshine has no significate trend, maximum temperature shows positive and significant trend in all the series and seasons and relative humidity shows significant negative trends in 8 of the 9 series studied during the spring.

CONFERENCE-ARTICLE 29 Reads 0 Citations <strong>A proposed robust approach for calculating the Standardized Evapotranspiration Deficit Index (SEDI) at the globa... Sergio Vicente-Serrano, Diego Miralles, Fernando Dominguez-C... Published: 05 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04832
DOI See at publisher website ABS Show/hide abstract

Here we propose a new methodology for calculating the Standardized Evapotranspiration Deficit Index (SEDI) at the global scale using the difference between the actual evapotranspiration (ET) and the atmospheric evaporative demand (AED). ET was estimated by the Global Land Evaporation Amsterdam Model (GLEAM) v3a. The SEDI has been proposed recently to quantify drought severity based on the difference between actual evapotranspiration (ET) and the atmospheric evaporative demand (AED). Our findings demonstrate that, regardless of the AED dataset used for calculations, a log-logistic distribution is needed in order to fit the ED time series. As such, in many regions worldwide, the SEDI is insensitive to the AED method used for calculation. The SEDI showed significant correlations with the Standardized Precipitation Evapotranspiration Index (SPEI) across a wide range of regions, particularly for short SPEI time-scales. Overall, while this work provides a robust approach for calculating spatially and temporally comparable SEDI estimates, regardless of the climate region and land surface conditions, further studies remain needed to assess the performance and the applicability of the SEDI to quantify drought severity across varying crop and natural vegetation areas.

CONFERENCE-ARTICLE 9 Reads 0 Citations <strong>Complex spatial and temporal influences of climatic drought time-scales on hydrological droughts in natural basi... Sergio Vicente-Serrano, Marina Peña-Gallardo, Jamie Hannafor... Published: 05 November 2017
First International Electronic Conference on the Hydrological Cycle, doi: 10.3390/CHyCle-2017-04835
DOI See at publisher website ABS Show/hide abstract

We have analysed the response of hydrological droughts to climatic droughts in different natural basins of United States of America. For this purpose we selected 289 complete series from an initial data set of 702 gauging stations, covering the period between 1940 and 2013. Drainage basins were obtained for each gauging station using a digital terrain model, and climate series (precipitation and the atmospheric evaporative demand) were obtained for each drainage series. A number of topographic, edaphic and remote sensing variables were quantified for each basin. A hydrological drought index (The Standardized Stream Flow Index-SSI) was obtained for each basin and the Standardized Precipitation Evapotranspiration Index (SPEI) was used as a metric of climatic drought severity. Relationship between different SPEI time scales and the SSI was quantified using Pearson’s correlations and the general patterns of response of hydrological droughts to climatic droughts were identified using a principal component analysis. In general there is a response of SSI to short SPEI time-scales but strong seasonality in this response is also found. Coherent geographic patterns were obtained from the analysis and the factors that control the different responses were analysed by means of a predictive discriminant analysis. Independent analysis for three periods (1940-1964, 1965-1989 and 1989-2013) were also performed and showed not important changes in the response of the SSI to the SPEI in the past 65 years.

Top