Please login first
Robert Morris   Dr.  University Lecturer 
Timeline See timeline
Robert Morris published an article in February 2019.
Top co-authors See all
Glen McHale

186 shared publications

Smart Materials & Surfaces Laboratory, Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.

Michael I. Newton

91 shared publications

School of Science and Technology; Nottingham Trent University; Nottingham UK

Neil J. Shirtcliffe

54 shared publications

Rhine-Waal University of Applied Sciences

Martin Bencsik

38 shared publications

Nottingham Trent University, School of Science and Technology, Clifton Lane, Clifton, Nottingham, NG11 8NS, UK.

Theodore Hughes-Riley

26 shared publications

Advanced Textiles Research Group, School of Art & Design, Nottingham Trent University, Bonington Building, Dryden Street, Nottingham NG1 4GG, UK

140
Publications
144
Reads
15
Downloads
173
Citations
Publication Record
Distribution of Articles published per year 
(1981 - 2017)
Total number of journals
published in
 
33
 
Publications See all
Article 0 Reads 0 Citations A preliminary study of milk powder hydration using TEDSpiL continuous wave NMR Steven T. Parslow, Najlaa K. Almazrouei, Michael I. Newton, ... Published: 21 February 2019
Magnetic Resonance in Chemistry, doi: 10.1002/mrc.4845
DOI See at publisher website
Article 0 Reads 0 Citations Ex vivo MRI cell tracking of autologous mesenchymal stromal cells in an ovine osteochondral defect model Hareklea Markides, Karin J. Newell, Heike Rudorf, Lia Blokpo... Published: 11 January 2019
Stem Cell Research & Therapy, doi: 10.1186/s13287-018-1123-7
DOI See at publisher website ABS Show/hide abstract
Osteochondral injuries represent a significant clinical problem requiring novel cell-based therapies to restore function of the damaged joint with the use of mesenchymal stromal cells (MSCs) leading research efforts. Pre-clinical studies are fundamental in translating such therapies; however, technologies to minimally invasively assess in vivo cell fate are currently limited. We investigate the potential of a MRI- (magnetic resonance imaging) and superparamagnetic iron oxide nanoparticle (SPION)-based technique to monitor cellular bio-distribution in an ovine osteochondral model of acute and chronic injuries. MSCs were isolated, expanded and labelled with Nanomag, a 250-nm SPION, and using a novel cell-penetrating technique, glycosaminoglycan-binding enhanced transduction (GET). MRI visibility thresholds, cellular toxicity and differentiation potential post-labelling were assessed in vitro. A single osteochondral defect was created in the medial femoral condyle in the left knee joint of each sheep with the contralateral joint serving as the control. Cells, either GET-Nanomag labelled or unlabelled, were delivered 1 week or 4.5 weeks later. Sheep were sacrificed 7 days post implantation and immediately MR imaged using a 0.2-T MRI scanner and validated on a 3-T MRI scanner prior to histological evaluation. MRI data demonstrated a significant increase in MRI contrast as a result of GET-Nanomag labelling whilst cell viability, proliferation and differentiation capabilities were not affected. MRI results revealed evidence of implanted cells within the synovial joint of the injured leg of the chronic model only with no signs of cell localisation to the defect site in either model. This was validated histologically determining the location of implanted cells in the synovium. Evidence of engulfment of Nanomag-labelled cells by leukocytes is observed in the injured legs of the chronic model only. Finally, serum c-reactive protein (CRP) levels were measured by ELISA with no obvious increase in CRP levels observed as a result of P21-8R:Nanomag delivery. This study has the potential to be a powerful translational tool with great implications in the clinical translation of stem cell-based therapies. Further, we have demonstrated the ability to obtain information linked to key biological events occurring post implantation, essential in designing therapies and selecting pre-clinical models.
CONFERENCE-ARTICLE 9 Reads 0 Citations Novel food-safe spin-lattice relaxation time calibration samples for use in magnetic resonance sensor development Najlaa Almazrouei, Rob Morris, Michael Newton Published: 14 November 2017
Proceedings, doi: 10.3390/ecsa-4-04916
DOI See at publisher website ABS Show/hide abstract

Sensors based on the measurement of nuclear magnetic resonance (NMR) relaxation times have been increasing in popularity, due in part to developments in permanent magnet technology. Such sensors tend to measure the spin-lattice (longitudinal) relaxation time T1, or the effective spin-spin (transverse) relaxation time T2eff. It is important when developing sensors that there are a range of safe and repeatable calibration samples to aid in their calibration and testing. For the spin-spin relaxation times different viscosities of PDMS oil provide a suitable range of safe test materials. However, for the spin-lattice relaxation times, available options are not as safe to use and typically consist of different concentrations of Nickel Sulphate or Copper Sulfate solutions. In this work we report the use of solutions and gels comprising full fat milk powder as a safe and inexpensive material that can affect the longitudinal relaxation Time over a very wide range of values. We demonstrate that concentrations in distilled water from 5% to 64% give T1 values from 1.8s down to 348 ms respectively. In addition to demonstrating their effectiveness for magnetic resonance sensors, validation of the range of T1 values is undertaken on a high field clinical MRI system.

CONFERENCE-ARTICLE 20 Reads 2 Citations Refinement of temperature sensing yarns Pasindu Lugoda, Tilak Dias, Theodore Hughes-Riley, Rob Morri... Published: 14 November 2017
Proceedings, doi: 10.3390/ecsa-4-04933
DOI See at publisher website ABS Show/hide abstract

Body temperature is an important parameter to measure in a number of fields such as medicine and sport. In medicine temperature changes can indicate underlying pathologies such as wound infections, while in sport temperature can be associated to a change in performance. In both cases a wearable temperature monitoring solution is preferable. In earlier work a temperature sensing yarn has been developed and characterised. The yarns were constructed by embedding an off-the-shelf thermistor into a polymer resin micro-pod and then into the fibres of a yarn. This process created a temperature sensing yarn that was conformal, drapeable, mechanically resilient, and washable. This work builds on this early study with the purposes of identifying the steady state error bought about on the temperature measurements as a result of the polymer resin and yarn fibres. Here a wider range of temperatures than previously explored were investigated. Additionally two types of polymer resin with different thermal properties have been tested, with varying thicknesses, for the encapsulation of the thermistor. This provides useful additional information for optimising the temperature sensing yarn design.

Article 12 Reads 0 Citations Advances in Electronics Prompt a Fresh Look at Continuous Wave (CW) Nuclear Magnetic Resonance (NMR) Michael I. Newton, Edward A. Breeds, Robert H. Morris Published: 23 October 2017
Electronics, doi: 10.3390/electronics6040089
DOI See at publisher website ABS Show/hide abstract
Continuous Wave Nuclear Magnetic Resonance (CW-NMR) was a popular method for sample interrogation at the birth of magnetic resonance but has since been overlooked by most in favor of the now more popular pulsed techniques. CW-NMR requires relatively simple electronics although, for most designs, the execution is critical to the successful implementation and sensitivity of the system. For decades there have been reports in the literature from academic groups showing the potential of magnetic resonance relaxation time measurements in industrial applications such as the production of food and drink. However, the cost, complexity and power consumption of pulsed techniques have largely consigned these to the literature. Advances in electronics and developments in permanent magnet technology now require a fresh look at CW-NMR to see if it is capable of providing cost effective industrial solutions. In this article, we review the electronics that are needed to undertake a continuous wave NMR experiment starting with early designs and journeying through the literature to understand the basic designs and limitations. We then review the more recent developments in this area and present an outlook for future work in the hope that more of the scientific community will take a fresh look at CW-NMR as a viable and powerful low-cost measurement technique.
Article 4 Reads 8 Citations A Study of Thermistor Performance within a Textile Structure Theodore Hughes-Riley, Pasindu Lugoda, Tilak Dias, Christoph... Published: 05 August 2017
Sensors, doi: 10.3390/s17081804
DOI See at publisher website ABS Show/hide abstract
Textiles provide an ideal structure for embedding sensors for medical devices. Skin temperature measurement is one area in which a sensor textile could be particularly beneficial; pathological skin is normally very sensitive, making the comfort of anything placed on that skin paramount. Skin temperature is an important parameter to measure for a number of medical applications, including for the early detection of diabetic foot ulcer formation. To this end an electronic temperature-sensor yarn was developed by embedding a commercially available thermistor chip into the fibres of a yarn, which can be used to produce a textile or a garment. As part of this process a resin was used to encapsulate the thermistor. This protects the thermistor from mechanical and chemical stresses, and also allows the sensing yarn to be washed. Building off preliminary work, the behaviour and performance of an encapsulated thermistor has been characterised to determine the effect of encapsulation on the step response time and absolute temperature measurements. Over the temperature range of interest only a minimal effect was observed, with step response times varying between 0.01–0.35 s. A general solution is presented for the heat transfer coefficient compared to size of the micro-pod formed by the encapsulation of the thermistor. Finally, a prototype temperature-sensing sock was produced using a network of sensing yarns as a demonstrator of a system that could warn of impending ulcer formation in diabetic patients.
Top