Please login first
José Antonio Luceño   Dr.  Institute, Department or Faculty Head 
Timeline See timeline
José Antonio Luceño published an article in February 2019.
Top co-authors
Ana María Díez-Pascual

29 shared publications

Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Madrid, Spain

Camino Gonzalez-Arellano

2 shared publications

Departamento de Química Orgánica y Química Inorgánica, Facultad de Ciencias, University of Alcalá, E-28871 Madrid, Spain.

Georgiana Maties

2 shared publications

Departamento de Química Orgánica y Química Inorgánica, Facultad de Ciencias, University of Alcalá, E-28871 Madrid, Spain

4
Publications
45
Reads
4
Downloads
1
Citation
Publication Record
Distribution of Articles published per year 

Total number of journals
published in
 
3
 
Publications
Article 0 Reads 0 Citations Materials for Photovoltaics: State of Art and Recent Developments José Antonio Luceño-Sánchez, Ana María Díez-Pascual, Rafael ... Published: 23 February 2019
International Journal of Molecular Sciences, doi: 10.3390/ijms20040976
DOI See at publisher website PubMed View at PubMed ABS Show/hide abstract
In recent years, photovoltaic cell technology has grown extraordinarily as a sustainable source of energy, as a consequence of the increasing concern over the impact of fossil fuel-based energy on global warming and climate change. The different photovoltaic cells developed up to date can be classified into four main categories called generations (GEN), and the current market is mainly covered by the first two GEN. The 1GEN (mono or polycrystalline silicon cells and gallium arsenide) comprises well-known medium/low cost technologies that lead to moderate yields. The 2GEN (thin-film technologies) includes devices that have lower efficiency albeit are cheaper to manufacture. The 3GEN presents the use of novel materials, as well as a great variability of designs, and comprises expensive but very efficient cells. The 4GEN, also known as “inorganics-in-organics”, combines the low cost/flexibility of polymer thin films with the stability of novel inorganic nanostructures (i.e., metal nanoparticles and metal oxides) with organic-based nanomaterials (i.e., carbon nanotubes, graphene and its derivatives), and are currently under investigation. The main goal of this review is to show the current state of art on photovoltaic cell technology in terms of the materials used for the manufacture, efficiency and production costs. A comprehensive comparative analysis of the four generations is performed, including the device architectures, their advantages and limitations. Special emphasis is placed on the 4GEN, where the diverse roles of the organic and nano-components are discussed. Finally, conclusions and future perspectives are summarized.
Article 1 Read 0 Citations Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyan... Jose Antonio Luceño-Sánchez, Georgiana Maties, Camino Gonzal... Published: 23 October 2018
Nanomaterials, doi: 10.3390/nano8110870
DOI See at publisher website ABS Show/hide abstract
Graphene oxide (GO), the oxidized form of graphene, shows unique properties including high mechanical strength, optical transparency, amphiphilicity and surface functionalization capability that make it attractive in fields ranging from medicine to optoelectronic devices and solar cells. However, its insolubility in non-polar and polar aprotic solvents hinders some applications. To solve this issue, novel functionalization strategies are pursued. In this regard, this study deals with the preparation and characterization of hexamethylene diisocyanate (HDI)-functionalized GO. Different reaction conditions were tested to optimize the functionalization degree (FD), and detailed characterizations were conducted via elemental analysis, Fourier-transformed infrared (FT-IR) and Raman spectroscopies to confirm the success of the functionalization reaction. The morphology of HDI-GO was investigated by transmission electron microscopy (TEM), which revealed an increase in the flake thickness with increasing FD. The HDI-GO showed a more hydrophobic nature than pristine GO and could be suspended in polar aprotic solvents such as N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP) and dimethyl sulfoxide (DMSO) as well as in low polar/non-polar solvents like tetrahydrofuran (THF), chloroform and toluene; further, the dispersibility improved upon increasing FD. Thermogravimetric analysis (TGA) confirmed that the covalent attachment of HDI greatly improves the thermal stability of GO, ascribed to the crosslinking between adjacent sheets, which is interesting for long-term electronics and electrothermal device applications. The HDI-GO samples can further react with organic molecules or polymers via the remaining oxygen groups, hence are ideal candidates as nanofillers for high-performance GO-based polymer nanocomposites.
Article 1 Read 0 Citations Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyan... Jose Antonio Luceño-Sánchez, Georgiana Maties, Camino Gonzal... Published: 23 October 2018
Nanomaterials,
PubMed View at PubMed ABS Show/hide abstract
Graphene oxide (GO), the oxidized form of graphene, shows unique properties including high mechanical strength, optical transparency, amphiphilicity and surface functionalization capability that make it attractive in fields ranging from medicine to optoelectronic devices and solar cells. However, its insolubility in non-polar and polar aprotic solvents hinders some applications. To solve this issue, novel functionalization strategies are pursued. In this regard, this study deals with the preparation and characterization of hexamethylene diisocyanate (HDI)-functionalized GO. Different reaction conditions were tested to optimize the functionalization degree (FD), and detailed characterizations were conducted via elemental analysis, Fourier-transformed infrared (FT-IR) and Raman spectroscopies to confirm the success of the functionalization reaction. The morphology of HDI-GO was investigated by transmission electron microscopy (TEM), which revealed an increase in the flake thickness with increasing FD. The HDI-GO showed a more hydrophobic nature than pristine GO and could be suspended in polar aprotic solvents such as N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP) and dimethyl sulfoxide (DMSO) as well as in low polar/non-polar solvents like tetrahydrofuran (THF), chloroform and toluene; further, the dispersibility improved upon increasing FD. Thermogravimetric analysis (TGA) confirmed that the covalent attachment of HDI greatly improves the thermal stability of GO, ascribed to the crosslinking between adjacent sheets, which is interesting for long-term electronics and electrothermal device applications. The HDI-GO samples can further react with organic molecules or polymers via the remaining oxygen groups, hence are ideal candidates as nanofillers for high-performance GO-based polymer nanocomposites.
CONFERENCE-ARTICLE 59 Reads 1 Citation <strong>Synthesis and characterization of </strong><strong>graphene oxide derivatives via functionalization reaction wit... Jose Antonio Luceño-Sanchez, Georgiana Maties, Camino Gonza... Published: 30 August 2018
Proceedings, doi: 10.3390/IOCN_2018-1-05485
DOI See at publisher website ABS Show/hide abstract

Graphene oxide (GO), the oxidized form of graphene, shows unique properties such as strong mechanical strength, high electrical and thermal conductivity, amphiphilicity and surface functionalization capability that make it very attractive in various fields ranging from medicine to optoelectronic devices and solar cells. However, its insolubility in non-polar and polar aprotic solvents hinders some applications. To solve this issue, novel functionalization strategies are pursued. In this regard, the current study deals with the preparation and characterization of hexamethylene diisocyanate (HDI)-functionalized GO. Different reactions conditions were tested to optimize the functionalization degree (FD), and detailed characterizations were conducted via elemental analysis, Fourier-transformed infrared (FT-IR) and Raman spectroscopies to confirm the success of the functionalization reaction. The morphology of HDI-GO was investigated by transmission electron microscopy (TEM), which revealed an increase in the flake thickness with increasing FD. The HDI-GO showed a more hydrophobic nature than pristine GO and could be suspended in polar aprotic solvents such as N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP) and dimethyl sulfoxide (DMSO) as well as in some low polar/non-polar solvents like tetrahydrofuran (THF), chloroform and toluene; further, the dispersibility improved upon increasing FD. Thermogravimetric analysis (TGA) results confirmed that the covalent attachment of HDI greatly improves the thermal stability of GO, ascribed to the crosslinking between adjacent sheets, which is interesting for a variety of applications including long-term electronics and electrothermal devices. The HDI-GO could further react with other organic molecules or polymers via the remaining oxygen groups, which makes them ideal candidates as nanofillers for high-performance GO-based polymer nanocomposites.

Top