Please login first
Luis Gimeno     Senior Scientist or Principal Investigator 
Timeline See timeline
Luis Gimeno published an article in December 2018.
Research Keywords & Expertise
0 A
0 Climate Change
0 Evaporation
0 Moisture Sources
Top co-authors See all
Ricardo M. Trigo

134 shared publications

Instituto Geofísico do Infante D. Luiz (IGIDL), Universidade de Lisboa, Ed C8, Piso 6, 1749-016, Rua da Escola Politécnica nº 58, 1250-102 Lisboa, Lisbon, PORTUGAL

Raquel Nieto

97 shared publications

Environmental Physics Laboratory (EPhysLab), Facultade de Ciencias, Universidad de Vigo, Ourense 32004, Spain

Isabel F. Trigo

59 shared publications

Instituto Português do Mar e da Atmosfera (IPMA); Lisbon Portugal

Alexandre M. Ramos

51 shared publications

Instituto Dom Luiz, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Anita Drumond

40 shared publications

EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain

141
Publications
290
Reads
71
Downloads
335
Citations
Publication Record
Distribution of Articles published per year 
(1999 - 2018)
Total number of journals
published in
 
25
 
Publications See all
Article 0 Reads 0 Citations Atmospheric Rivers over the Arctic: Lagrangian Characterisation of Their Moisture Sources Marta Vázquez, Iago Algarra, Jorge Eiras-Barca, Alexandre M.... Published: 26 December 2018
Water, doi: 10.3390/w11010041
DOI See at publisher website ABS Show/hide abstract
In recent years, the Arctic has become a subject of special interest due to the drastic effect of climate change over the region. Despite that there are several mechanisms that influence the Arctic region; some recent studies have suggested significant influences of moisture transport over the observed loss of sea ice. Moisture transport can affect the region in different ways: direct precipitation over the region, radiative effect from the cloud cover and through the release of latent heat. Atmospheric rivers (ARs) represent one of the main events involved in moisture transport from the tropics to the mid-latitudes and despite having been shown especially relevant on the northward advection, their effect over the Arctic has not been deeply investigated. The aim of this work was to establish the groundwork for future studies about the effect of ARs linked to moisture transport over the Arctic region. For this purpose, an automated algorithm was used to identify regions of maximum AR occurrence over the Arctic. This was done by analysing the number of AR detections every month over a band of 10° of latitude centred on 60° N. The Lagrangian model FLEXPART was used to find the areas where the ARs take their moisture to the Arctic. Using this model, the anomalous moisture contribution to these baroclinic structures was analysed taking into account only the dates of AR occurrence. From the results, it appears that the main moisture sources for AR events extend over the North Atlantic and North Pacific oceans; moreover, the local input of moisture over the region of maximum AR occurrence seems to be especially relevant. In general terms, moisture comes from major evaporative areas over the western part of the oceanic regions in the band between 30° and 40° N for most months in the year, showing a continental origin in the summer months. This behaviour agrees with the climatological moisture transport into the Arctic determined in previous studies. However, in special association with AR events, an intensification of local moisture uptake is observed over the area of maximum AR activity and nearby. The study of the origin of this moisture and associated anomalies for Arctic ARs is an important step in the analysis of the effect of these structures on the Arctic environment.
Article 1 Read 0 Citations The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology Mojtaba Heydarizad, Ezzat Raeisi, Rogert Sori, Luis Gimeno, ... Published: 31 October 2018
Water, doi: 10.3390/w10111550
DOI See at publisher website ABS Show/hide abstract
Iran faces climate disparities due to extreme topographic anomalies, the Caspian Sea and the Persian Gulf water bodies, influences from diverse air masses and moisture sources, and its considerable area. FLEXPART model has been utilized to determine the main marine and continental moisture sources for south-central (Shiraz box) and northeastern (Mashhad box) parts of Iran. The marine moisture sources directly influenced extreme drought and wet conditions in Shiraz and Mashhad boxes during the wet period, while no correlation was observed during the dry period. In addition to local components, extreme drought and wet conditions have also been influenced by the climatic teleconnections. Extreme drought conditions mainly occurred during the La Niña phase, while wet conditions mainly occurred during the El Niño phase. Scrutinizing the effect of marine moisture sources on the hydrology of water resources demonstrated that the moisture contribution from the Arabian Sea directly influenced the discharges of Chenar-rahdar (in the Shiraz box) and Kardeh (in the Mashhad box) rivers during the wet period. However, the Red Sea inversely correlated with the discharges of both rivers during the dry period. Hydrogeologists, hydrologists, and meteorologists can utilize the outputs of this survey to develop climatology and hydrology models in the future.
Article 0 Reads 0 Citations On the assessment of the moisture transport by the Great Plains low-level jet Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raque... Published: 29 October 2018
Earth System Dynamics Discussions, doi: 10.5194/esd-2018-76
DOI See at publisher website ABS Show/hide abstract
Low-Level Jets (LLJs) can be defined as filamentous wind corridors of anomalously high wind speed values located within the first km of the troposphere. These structures, together with atmospheric rivers (ARs), are the major meteorological systems in the meridional transport of moisture on a global scale. In this work, we focus on the Great Plains low-level jet, which plays an important role in the moisture transport balance over the central United States. The Gulf of Mexico is the main moisture source for the GPLLJ, which has been identified as a key factor for rainfall modulation over the eastern and central US. The relationship between moisture transport from the Gulf of Mexico to the Great Plains and precipitation is well documented in previous studies. Nevertheless, a large uncertainty still remains in the quantification of the moisture amount actually carried by the GPLLJ. The main goal of this work is to address this question. For this purpose, a relatively new tool, the regional atmospheric Weather Research and Forecasting Model with 3D water vapour tracers (WRF-TT, Insua-Costa and Miguez-Macho, 2018) is used together with the Lagrangian model FLEXPART to estimate the load of precipitable water advected within the GPLLJ. From a climatology of jet intensity over a 37-year period (Rife et al., 2010), which follows a Gaussian distribution, we select for study 5 cases representing the mean, and one and two standard deviations above and below it. Results show that the jet is responsible for roughly 70%–80% of the moisture transport occurring in the southern Great Plains when a jet event occurs. Furthermore, moisture transport by the GPLLJ extends to the northeast US, accounting for 50% of the total in areas near the Great Lakes. Vertical distributions show the maximum of moisture advected by the GPLLJ at surface levels and maximum values of moisture flux about 500 m above, in coincidence with the wind speed profile.
Article 1 Read 1 Citation The Identification of Iran’s Moisture Sources Using a Lagrangian Particle Dispersion Model Mojtaba Heydarizad, Ezzat Raeisi, Rogert Sori, Luis Gimeno Published: 17 October 2018
Atmosphere, doi: 10.3390/atmos9100408
DOI See at publisher website ABS Show/hide abstract
Iran has faced many water shortage crises in the past. Iran’s moisture sources for precipitation were identified by Lagrangian approach using the FLEXible PARTicle dispersion model (FLEXPART) v9.0 model. The results demonstrate that Iran receives its moisture from both continental and oceanic sources. During the wet season, moisture uptake from the Arabian Sea, the Persian Gulf, and the Mediterranean Sea is dominant, while during the dry season, the role of the Red Sea, the Caspian Sea, and the Persian Gulf is intensified. Studying drought conditions by comparing 1-month, 6-month, and 12-month standardized precipitation index (SPI) with (E-P) values of oceanic and continental moisture sources (E stands for the evaporation and P the precipitation) using multiregression model demonstrates that among oceanic sources the Arabian Sea, the Persian Gulf, the Mediterranean Sea, and the Indian Ocean affect SPI values and among continental sources, moisture from bare grounds and cultivated lands influences SPI values during wet season. However, no correlation exists between oceanic and continental (E-P) and SPI values during the dry season. The results obtained by this study can be used by meteorologists and hydrology scientists for future water management programmes in Iran.
Article 0 Reads 2 Citations From Amazonia to southern Africa: atmospheric moisture transport through low-level jets and atmospheric rivers Alexandre M. Ramos, Ross C. Blamey, Iago Algarra, Raquel Nie... Published: 18 September 2018
Annals of the New York Academy of Sciences, doi: 10.1111/nyas.13960
DOI See at publisher website
Article 0 Reads 2 Citations Contribution of Moisture from Mediterranean Sea to Extreme Precipitation Events over Danube River Basin Danica Ciric, Raquel Nieto, Alexandre M. Ramos, Anita Drumon... Published: 04 September 2018
Water, doi: 10.3390/w10091182
DOI See at publisher website ABS Show/hide abstract
In the most recent decades, central Europe and the Danube River Basin area have been affected by an increase in the frequency and intensity of extreme daily rainfall, which has resulted in the more frequent occurrence of significant flood events. This study characterised the link between moisture from the Mediterranean Sea and extreme precipitation events, with varying lengths that were recorded over the Danube River basin between 1981 and 2015, and ranked the events with respect to the different time scales. The contribution of the Mediterranean Sea to the detected extreme precipitation events was then estimated using the Lagrangian FLEXPART dispersion model. Experiments were modelled in its forward mode, and particles leaving the Mediterranean Sea were tracked for a period of time determined with respect to the length of the extreme event. The top 100 extreme events in the ranking with durations of 1, 3, 5, 7, and 10 days were analysed, and it was revealed that most of these events occurred in the winter. For extreme precipitation, positive anomalies of moisture support from the Mediterranean were found to be in the order of 80% or more, but this support reached 100% in summer and spring. The results show that extreme precipitation events with longer durations are more influenced by the extreme Mediterranean anomalous moisture supply than those with shorter lengths. However, it is during shorter events when the Mediterranean Sea contributes higher amounts of moisture compared with its climatological mean values; for longer events, this contribution decreases progressively (but still doubles the climatological moisture contribution from the Mediterranean Sea). Finally, this analysis provides evidence that the optimum time period for accumulated moisture to be modelled by the Lagrangian model is that for which the extreme event is estimated. In future studies, this fine characterisation could assist in modelling moisture contributions from sources in relation to individual extreme events.
Top