In recent years, soft pneumatic actuators have come in the spotlight because of their simple con-trol and the wide range of complex motions. To monitor the deformation of soft robotic systems, elastomer-based sensors are being used. However, embedding of sensors into soft actuator mod-ules by polymer casting is time consuming and difficult to upscale. In this study, it is shown how a pneumatic bending actuator with an integrated sensing element can be produced using extru-sion-based additive manufacturing method, e.g. fused deposition modeling (FDM). The advantage of FDM against direct printing or robocasting is the significantly higher resolution and the ability to print large objectives in short time. New, commercial launched pellet-based FDM printers are able to 3D print thermoplastic elastomers of low shore hardness that are required for soft robotic applications, to avoid high pressure for activation. A soft pneumatic actuator with the in-situ in-tegrated piezoresistive sensor element was successfully printed using a commercial styrene-based thermoplastic elastomer (TPS) and a developed TPS/carbon black (CB) sensor composite. It has been demonstrated that the integrated sensing elements could monitor the deformation of the pneumatic soft robotic actuator. The findings of this study contribute to extending the applicabil-ity of additive manufacturing for integrated soft sensors in large soft robotic systems.
Previous Article in event
Previous Article in session
Next Article in event
Next Article in session
Next Article in panel
A soft pneumatic actuator with integrated deformation sensing elements produced exclusively with extrusion based additive manufacturing
Published:
17 May 2021
by MDPI
in 8th International Symposium on Sensor Science
session Flexible and Stretchable Sensors
https://doi.org/10.3390/I3S2021Dresden-10097
(registering DOI)
Abstract:
Keywords: piezoresistive sensor; soft robotics; additive manufacturing; fused deposition modeling; pneumatic actuator