Recently, the Arctic system has been suffering an extreme reduction in its sea ice extension. 2007 and 2012 represent those years showing the maximum sea ice loss. This rapid decrease has been suggested to have important implications on climate not only over the system itself but also globally. Understanding the causes of this sea ice loss is key to analyzing how future changes related to climate change can affect the Arctic system and the global system. For this purpose, we have applied the Lagrangian model FLEXPART to study the anomalous transport of moisture for these years and to analyze the implications on the sea ice it may produce. Throughout this model, we will analyze the variation in the sources of moisture for the system (backward analysis), and how the moisture supply from these sources is affected (forward analysis). From the results an anomalous transport of moisture have been proved to occur for both years. However, the pattern is different for each event, being the anomalous moisture supply different in both intensity and spatial distribution from every source.
                    Previous Article in event
            
                            Previous Article in session
            
                    
    
                    Next Article in event
            
                            Next Article in session
            
                    
                                                    
        
                    Extreme Sea Ice Loss over the Arctic: An Analysis Based on Anomalous Moisture Transport
                
                                    
                
                
                    Published:
15 July 2016
by MDPI
in The 1st International Electronic Conference on Atmospheric Sciences
session Climate and Interannual Variability
                
                                    
                
                
                    Abstract: 
                                    
                        Keywords: Arctic system, moisture supply, Lagrangian method