In recent years, the sector of catering services has increased the number of contracts up to 33% of firms or collective organizations in the EU. This represents an annual turnover of about 24 billion euro from educational institutions, healthcare and social sectors, prisons and private companies.
However, large economic losses appear every year at each stage of the food value chain. Entities such as the Food and Agriculture Organization of the United Nations (FAO) and the European Parliament (EP) have already launched several policies and initiatives to avoid these losses.
Following to these efforts, temperature control has come up as a key factor in the distribution sector of the whole food supply chain. As a counterpart, food distribution groups frozen, fresh and even cooked food so the temperature monitoring system has to face different scenarios with unalike ambient temperature. This variety of scenarios affects on the consumption of the electronics. In most of the electronics’ datasheet, power consumption values are given for an ambient temperature of 25°C, which differs from the conditions of interest.
This work presents the effects that ambient temperature causes on the SL900A sensor tag’s current consumption. Temperature conditions inside a metallic tray, transporting ready meal for the service food industry, are replicated through a climatic chamber whereas the current consumption is measured using a DC power analyser. Both active and data logging modes of operation have been used and the correlation between their current consumption and the temperature variation has been analysed.