Please login first

List of accepted submissions

 
 
Show results per page
Find papers
 
  • Open access
  • 0 Reads
Can Biomimetic Superhydrophobic Surfaces Resist Underwater Biofouling?
, , ,

In exploring the biofouling resistance capabilities of biomimetic superhydrophobic surfaces, femtosecond laser technology was employed to create these surfaces, leading to comprehensive anti-fouling efficacy evaluations. Laboratory tests assessing surface contact angle, roughness, and chemical stability were conducted, alongside extended testing in simulated marine and freshwater environments. These tests aimed to determine whether these surfaces could maintain their anti-fouling properties under various environmental conditions. The results from controlled laboratory conditions indicated that these surfaces exhibited excellent hydrophobicity and chemical stability, suggesting potential effectiveness against biofouling. However, when subjected to more complex, real-world aquatic settings, the performance of these surfaces was not as effective as anticipated. Initially, the surfaces showed promise in resisting fouling, but over time, their effectiveness significantly diminished. This decline in performance was attributed to the accumulation of biofouling agents, such as proteins and polysaccharides, which facilitated the adhesion of various fouling organisms. This gradual buildup of biological material highlighted a critical limitation of superhydrophobic surfaces in dynamic aquatic environments. These findings challenge the previously held assumption that superhydrophobic properties alone are sufficient for effective biofouling resistance. It becomes evident that environmental factors play a significant role in the performance of these surfaces. This study underscores the need for future research to focus on the environmental impact on anti-fouling surfaces and to explore the integration of superhydrophobic features with other anti-fouling technologies. Such multidisciplinary approaches could lead to the development of more effective and durable solutions to combat biofouling, which is a persistent problem in marine and freshwater systems.

  • Open access
  • 0 Reads
Research on Urban Micro-community Planning and Design Inspired by Functional Properties of Analogous Cells

As the basic unit of life, analogous cells possess efficient spatial utilization, material exchange, and information transmission characteristics which provide important insights for micro-community planning and design. Based on three functional attributes (the spatial utilization performance, material exchange, and information transmission of analogous cells), this study proposes planning and design principles and methods for micro-community inspired by the functional properties of analogous cells. In response to the efficient spatial utilization characteristics of analogous cells, this study proposes the design principles of compact communities. By reasonably arranging community spaces, improving land use efficiency, and achieving maximum functional diversity within limited areas, this study introduces design methods, such as vertical greening and rooftop gardens, to increase community green space and improve residents' living environment. Drawing on the material exchange characteristics of analogous cells, this study focuses on enhancing community fluidity during the planning and design process. Specifically, it optimizes the road system, reduces the exposure time of motor vehicles in the community, and embeds low-carbon travel modes such as walking and cycling, thereby reducing air pollution in the micro-ecosystem. Inspired by the information transmission characteristics of analogous cells, this study focuses on connectivity and accessibility during the initial planning process. By reasonably planning public spaces and pedestrian networks, strengthening the connections between various parts of the community allows residents to conveniently and efficiently reach their destinations within a short period of time. This study conducts planning and design practices for a micro-community inspired by the functional properties of analogous cells, using a micro-community in Wuhan, China as an example. The results show that micro-community planning and design inspired by the functional properties of analogous cells can maximize micro-community functions, promoting the sustainable development and renewal of community functions.

1 ··· 6 7 8 9 10
Top